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Abstract 
 

 Inversion approaches are highly used in astrophysics since the received data is 

modified due to the instrument components and its passage through the channel. In this 

report, our main purpose is to reconstruct a 3D astrophysics map from a 2D image issued 

from the Medium Resolution Spectroscopy (MRS) of the MIRI instrument in James Webb 

Space Telescope. MRS is a very complex component that allows access into the specter of 

the received object, due to the diffraction gratings present in this instrument, and allow 

hyperspectral measures. 

 In order to recuperate the original cube and apply the inversion methods, we must 

first study the MRS components and determine the instrument responses that modify the 

observed object. During the acquisition, the 3D observed object represented by 2 spatial 

dimensions and one spectral dimension will be spatially affected by optic response of the 

telescope and spectrally by the response of the diffraction gratings. The particularity of 

these responses is that they change according to the wavelength value, which will introduce 

non-stationary responses to our acquisition process that will complicate the interpretation 

of the data. Approached methods are used to handle the non-stationary responses with a 

sum of stationary responses which will differ this work from the classic hyperspectral 

measures. 

 After the acquisition process, we will reconstruct the original cube by using 

inversion approaches. We will adopt in this work the least square method for the inversion 

due to the linearity of the system, and we will talk about the ill-posed problem that this 

method causes and how to regulate the problem. 
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Scientific Context 
1. Research unit 

 

My internship took place at the L2s laboratory from 19/03/2018 till 31/08/2018. 

L2s is a public laboratory and a research mixt unit of CentraleSupélec, CNRS (Centre 

National de la Recherche Scientifique) and Université Paris-Sud. More precisely, I was 

working on my internship at the GPI (Groupe de problème inverse) division. In this chapter 

we will present the different research unit related to L2s. 

1.1. Paris-Sud university 
Paris-Sud is a public university dedicated to high level research. It is represented by 

the president Sylvie Retailleau elected on may 30𝑡ℎ  2016. Paris-Sud university was 

founded in December 1970 when the centers at Orsay, Châtenay-Malabry, Sceaux, Cachan 

and Kremlin-Bicêtre were merged. Since then, because of the proximity of Paris-Sud 

University to the Atomic Energy Institute (CEA) and the CNRS laboratories in Gif sur 

Yvette, many institutes and laboratories, as well as academic schools like Polytechnique, 

HEC, IHES, ENSTA and others also came to this area. As a result, the Vallée de Chevreuse 

has become one of the most important and well-known areas in Europe for scientific 

research. Paris-Sud University is made up of five Training and Research Units, still referred 

to as "faculties", three IUTs (University Institutes of Technology), and one School of 

Engineering, all located to the south of Paris. The University's head office is in Orsay, in 

Essonne. Because of its exceptional environment, Paris-Sud University is able to maintain 

a close relationship with leading research organizations like CNRS, Inserm, Inria, Inra and 

CEA, and with the French Grandes Ecoles such as Polytechnique, Supélec and HEC. 

Within Paris-Sud University there are over 80 internationally known laboratories; more 

than 30 technological platforms are open to industry and these publish more than 5,000 

scientific publications every year. 

1.2. CNRS 
The National Center for Scientific Research, or CNRS, is a public organization under 

the responsibility of the French Ministry of Education and Research. It was founded in 

1939 by the governmental decree and it contains 10 institutes in all the fields of knowledge 

and has laboratories throughout France where they and employ a large body of tenured 

researchers, engineers, and support staff. The CNRS aims to a lot of goals such as 

developing scientific information, supporting research training and contributing to promote 

and apply research results. 
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1.3. CentraleSupélec 

CentraleSupélec is a public institution under ministerial charter, devoted to the sciences 

and engineering. This charter is shared between the Ministry of Higher Education, 

Research and Innovation, and the Ministry of Economy, Industry and Digital Technologies. 

CentraleSupélec was officially established on January 1st, 2015, bringing together two 

leading engineering schools in France; Ecole Centrale Paris and Supélec. The co-operation 

between the two grandes écoles, as they are known in the French system, had progressively 

been gaining momentum since 2009, with sustained alliance in three core areas: 

engineering education, executive education and research. The academic and research 

excellence is nestled in the cooperations with large national institutions such as the CNRS, 

CEA, INRIA, ISERM and ONERA. 

 

1.4. Signal and system laboratory 
L2s laboratory is a research unit directed by Sliviu-lulian NICULESCU. It welcomes 

every year a remarkable number of interns and visitors, plus, the laboratory is formed of 

CNRS researchers, instructors, PHD and post-PHD students. L2s contributes to the 

methodological and theoretical development of signal processing, systems, and 

electromagnetic systems by its numerous publications. This laboratory participates in many 

scientific activities such as conferences and workshops on a local, national and 

international term. 

 

1.5. Inverse Problem Group (GPI) 
My internship took place in the GPI group one of the components of the signal 

division, represented by Aurélia FRAYSSE.  

GPI activities mainly concerns image reconstruction and restauration for many fields 

such as medical imaging, astrophysics and geophysics by treating many essential subjects 

such as deconvolution, data fusion, Fourier transform, source separation. The main purpose 

of the GPI work is to propose method such as regularized method and Bayesian approaches 

in order to resolve what it’s called ill posed problem in image inversion. 
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Introduction 
 

This internship concerns the reconstruction of 3D astrophysics image having 2 spatial 

dimensions and one spectral dimension. We will be working on data issued from the 

spectroscope instrument in James Webb Space Telescope (JWST). Researchers are 

interested in spectrograph because it reveals important physical and chemical properties of 

the light observed. These instruments will introduce special effects to the observed object 

while being analyzed. The goal is to identify the components of the instrument and use this 

model in the image reconstruction in order to obtain a hyperspectral resolution for the 

reconstructed data. 

2. James Webb Space Telescope (JWST) 
 

Named after James-E Webb, the JWST is developed in collaboration among NASA, 

European space agency (ESA) and Canadian space agency (CSA). The telescope was 

supposed to be launched late 2018 by the Arian 5 rocket but the launching was delayed to 

2021. This project cost around 8.8 billion dollars for 5.5 years of operation but its 

instruments have a life expectancy of 10 years.  

 JWST covers a wide range of wavelengths that observes the mid-infrared range, 

from 0.6 𝜇𝑚 to 28 𝜇𝑚. This range will allow the observation of many astrophysics aspects 

like the redshifted objects and it will also help understanding the stars and planet formation 

since they emit radiations in the infrared band that are way too distant for other telescopes 

to observe. The telescope is also placed at the 𝐿2 Lagrange point at about 1,500,000 km 

away from the earth orbit. This distance will make any hardware update or reparation on 

the telescope quasi-impossible after the launching. The particularity of the 𝐿2 Lagrange 

point is that the telescope will keep all the sun, earth and moon on the same side which will 

allow the use of only a single sunshield that can block the light coming from the three 

bodies. The sunshield is folded 12 times to fit the Ariane 5 rocket. Once launched, the 

sunshield will unfold making a surface of 21.197m x 14.162m. 

The importance of the sunshield is to assure that telescope will maintain a 

temperature below -220 degrees. If not, the telescope itself will start emitting in the infrared 

range which will cause unclear observations of the desired infrared light, and sometimes 

completely outshine them. 
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________________________________________________________________________ 

Figure 1: A representation of the JWST telescope (JWST NASA documentation) 

 
________________________________________________________________________ 

Figure 2: A representation of the Lagrange points in the space. Any Lagrange point keeps 
the same position between the earth and sun but the advantage of L2 is that it keeps all 

three bodies on the same side (Space.com science and astronomy) 

 

______________________________________________________________________________ 
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2.1. JWST optics 
JWST telescope contains a big mirror composed of 18 hex diagonal segments folded 

before launching. Once launched in the space, these segments will be unfolded to form a 

mirror with a diameter of 6.5m. It is the biggest mirror ever to be sent to the space, it will 

permit to collect more photons which will increase the sensibility of the telescope and 

decrease the telescope limitation by the optical response of the mirror. 

2.2. JWST instruments 
The Integrated Science Instrument Module (ISIM) provides the electrical power 

resource, the structural stability and handles the cooling for the JWST. It contains four 

scientific instruments.  

1. Near Infrared Camera (NIRCAM). 

 The NIRCAM is the JWST imager, covering from 0.6 𝜇𝑚 through 5 𝜇𝑚. It is 

occupied with a coronagraph that have a role of blocking the light of very bright 

objects and focuses on the nearby objects. 

  

2. Near Infrared Spectrograph (NIRSpec) 

 NIRSpec covers the same range as NIRCAM but the difference between these 

two instruments is that NIRCAM works on imager and NIRSpec works on the 

spectroscopy.  

3. Fine Guidance Sensor and Near Infrared Imager and Slitless Spectrograph 

(FGS/NIRISS) 

The FGS point the telescope which means that it stabilizes the line of sight of 

the observation. The NIRISS is composed of imaging and spectroscopy covering a 

range from 0.8 𝜇𝑚 to 5 𝜇𝑚.. 

 

4. Mid Infrared Instrument (MIRI)  

The MIRI instrument covers a wavelength range from 4.85 𝜇𝑚 to 28.45 𝜇𝑚. It 

contains two main components, an imager (MIRIM) and a spectrograph. The main 

difference between these two components is that the imager has a high spatial 

resolution but a limited spectral resolution as for the spectrograph, it contains a high 

spectral resolution but a limited spatial resolution.  

In this report, the MRS component of the MIRI instrument will be adopted. Since 

we are working on the hyperspectral measures, the spectrometer is used to separate the 

light of the observed 3D object. By doing that, astrophysicists can analyze the light to 

measure gas and analyze the chemical components of the stars and planets.  
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________________________________________________________________________ 

Figure 3: A representation of the spatial coordination in arc minutes of the instruments 
of JWST (James Webb Space Telescope documentation) 

 

______________________________________________________________________________ 

 

2.3. Problematic 
We want to reconstruct a 3D infrared map for the astrophysicist to allow a better 

interpretation of the received data by using reconstruction methods and inversion 

approaches. To do so, we must take into consideration and identify the optical components 

of the MRS. When passed through the instrument, special effects from the optical 

components will modify the observed object which will disturb the interpretation of the 

received data. The particularity of this work is that during the acquisition, we will 

encounter two major obstacles that will limit the diffraction of the observed object spatially 

and spectrally and must be taken into consideration during the process: 

1. The optical response of the mirror that limit spatially the diffraction and changes 

according to the value of the wavelength. 

2. The diffraction gratings response that limit spectrally the diffraction and also 

changes according to the value of the wavelength which will introduce a non-

stationarity to our model. 

In chapter 3, we will identify the MRS components and give the explicit and 

theoretical continuous formulas of the instrument, as for the chapter 4, we will develop an 

algorithm for the MRS model, apply it to a 3D cube made of two stars since we have not 

real data to test yet, as well as aboard the main problems of the MRS modeling listed in the 

previous paragraph and show the results of the algorithm.  
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In chapter 5 we will use the direct model attributed to use linear inversion approaches in 

order to allow a better reconstruction and to obtain a 3D cube faithful as much as possible 

to the observed cube. 
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Direct model 
3. MRS modeling 

 

The JWST observes a 3D object ф(𝛼, 𝛽, 𝜆) placed in the far field in the space.  This 

object is composed of two spatial dimensions (α and β) and one spectral dimension (λ). 

Once observed, the collected object will go through some complex optical components of 

the MRS instrument. The resulting output received on the detector is a 2D image with one 

spatial dimension 𝛼 and one spectral dimension 𝜆 which will depend also on the second 

spatial dimension β. The main purpose of this work is to be able to reconstruct the original 

3D cube from the 2D received image. To do so, we must first identify these complex 

components of the MRS instrument by representing a block scheme of each optical 

component and find its explicit mathematical expression. 

________________________________________________________________________ 

 

     Figure 4: Block diagram representing the components of the MRS instrument  

 
______________________________________________________________________________ 
 

3.1. Spatial convolution 
The optical system of the telescope will gather the light from the observed object and 

will diffract it to the focal plane where the telescope instruments are placed. The light is 

gathered in a parallel manner since the object is considered placed in the far field. As a 

result, the diffraction of the light is limited by a spatial 2D convolution with the optic 

response of the mirror known as the point spread function (PSF) and the observed object 

will be blurred. The particularity of this convolution is that the PSF vary along with the 
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wavelength of the 3D flux. More the wavelength is high more the telescope will be limited 

by the diffraction. The convolution can be written as [6]: 

ϕopt(𝛼, 𝛽, 𝜆) = ∫ ∫ 𝜙(𝛼′, 𝛽′, 𝜆)ℎ(𝛼′ − 𝛼, 𝛽′ − 𝛽, 𝜆)𝑑𝛼′𝑑𝛽′
𝛽𝛼

                                          (3.1) 

______________________________________________________________________________ 

Figure 5: The PSFs below are obtained using the webbpsf simulator for the MIRI instrument 
in the JWST telescope for λ = 5,10 and 15 µm, we can clearly see that the PSF increase with 
the increase of the wavelength. 

 
______________________________________________________________________________ 
 

3.2. Spectral division 
The MRS instrument will then observe the blurred object with a field of view up to 

7.2” to 7.9” [1]. The full wavelength range in the MRS will be divided into four spectral 

channels using a simple pass-band separation by the dichroic filters. The four channels are 

seen simultaneously and every channel has its own wavelength coverage and its optimal 

resolution on the detector (see table 1). This method is adopted for the reason that we are 

not capable of measuring the whole spectra range at one time. Each exposure on the 

detector can only cover one third of the wavelength in each channel. To cover the whole 

range, we need three exposures, short (A), medium (B) and long (C) which leaves us with 

12 spectral channels, each with its own field of view and wavelength coverage. The spectral 

division changes in function of the wavelength and can be written as: 

            𝜙(𝑘)𝑜𝑝𝑡(𝛼, 𝛽, 𝜆) =  𝜙𝑜𝑝𝑡(𝛼, 𝛽, 𝜆).𝑊𝑘(𝛼, 𝛽, 𝜆 − 𝜆𝑘)                                             (3.2)  
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________________________________________________________________________ 

Figure 6: A representation of the 12 spectral filters dividing the spectral channel into 

spectral channels (James Webb Space Telescope documentation) 

 

______________________________________________________________________________ 

3.3. Spatial division 
Before the light in each channel go through the diffraction gratings, the object is 

spatially sliced and reformatted by the integral field unit (IFU). The blurred flux in every 

channel reaches its own image slicer which will decompose the image into several number 

of slices depending on the spectral channel. The IFU model has several advantages in the 

MRS instrument model [2]:  

1. By dividing one spectral dimension into slice, it will be easier to eliminate a 

spatial dimension at the diffraction gratings since the observed flux is in 3D and 

the received image on the detector is in 2D. Ideally, the slice must be very thin 

but that will leave us with a null flux 

2. The number of width changes between channels for the reason that the slice width 

is set to be less or equal to the FWHM of the PSF, and since the PSF changes 

according to the wavelength value, the number of width changes between 

channels, which will prevent the loss of light, a problem that we might have faced 

by using a long-slit model 

3. . The IFU also permits to center the source in a narrow slit which can accelerate 

the acquisition procedure. The IFU align and format the segment onto the grating 

diffraction in a spectrograph. 
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________________________________________________________________________ 

Figure 7: A schematic representation on how the imaged is sliced in function of a spatial 

dimension and how the light from each slice is reformatted into an entrance slit 

spectrograph (Courtesy of Durham University) 

 

______________________________________________________________________________ 

Figure 8: A representation of the 4 sliced channels observed simultaneously, each with its 
own FOV (James Webb Space Telescope documentation) 

 

______________________________________________________________________________ 
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_______________________________________________________________________________ 

Table 1:Table showing the characteristics of the MRS IFU model: the wavelength coverage 
for each channel, FOV in arcsec, number and width of slices, pixel size on the detector and 
the spectral resolution (James Webb Space Telescope documentation) 

Channel 

name 

with λ 

range 

FOV  

(arcsec) 

Number 

of 

slices 

Slice 

width 

(arcsec) 

Pixel 

size 

(arcsec) 

Sub-band 

name 

λ range Spectral 

resolution 

𝝀/𝚫𝝀 

Channel1 

4.89-7.66 

3.3x3.7 21 0.176 0.196 Short(A) 

 

Medium(B) 

 

Long(c) 

 

4.89-5.75 

 

5.65-6.64 

 

6.52-7.66 

3320-3710 

 

3190-3750 

 

3100-3610 

Channel2 

7.47-

11.71 

4.2x4.8 17 0.277 0.196 Short(A) 

 

Medium(B) 

 

Long(c) 

 

7.49-8.78 

 

8.65-10.14 

 

9.99-11.71 

2990-3110 

 

2750-3170 

 

2860-3300 

Channel3 

11.53-

18.06 

5.6x6.2 16 0.387 0.245 Short(A) 

 

Medium(B) 

 

Long(c) 

 

11.53-13.48 

 

13.37-15.63 

 

15.44-18.05 

2530-2880 

 

1790-2640 

 

1980-2790 

 

Channel4 

17.66-

28.45 

7.2x7.9 12 0.645 0.271 Short(A) 

 

Medium(B) 

 

Long(c) 

 

17.66-20.92 

 

20.54-24.40 

 

23.95-28.45 

1460-1930 

 

1680-1770 

 

1630-1330 
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3.4. Dithering 
Dithering is a technique used by astrophysics that consists of moving the scene observed 

by a small amount and then re-observe. Dithering is adapted for many reasons, it helps with 

the artifacts detection because a given object is imaged on different parts of the detector, 

plus it allows a better reconstruction of lost information due to the spatial under sampling. 

The spatial division and dithering can be considered as spatial shifting and can be written 

as: 

                      𝜙(𝑗,𝑘)𝑜𝑝𝑡(𝛼, 𝛽, 𝜆) =  𝜙(𝑘)𝑜𝑝𝑡(𝛼, 𝛽, 𝜆).𝑊𝑗(𝛼 − 𝛼𝑗 , 𝛽 − 𝛽𝑗 , 𝜆)                                (3.3) 

 

3.5. Diffraction gratings 
The light in each sliced reformatted and aligned by the slicer will be sent to the 

diffraction gratings where the light is dispersed into monochromatic lights depending on 

the wavelength. A lens is placed after the diffraction gratings to focalize each 

monochromatic light on the detector.  

3.5.1. Diffraction impulse response 

Consider a monochromatic light entering the diffraction gratings, the intensity 

response of the diffraction gratings for a monochromatic light will be approximated follow 

[4]:  

ℎ𝑟(𝛽, 𝜆′, 𝜆) ≈ 𝐼0𝑠𝑖𝑛𝑐2 (
𝜋𝑏𝜆′

𝜆
 )

sin2(𝑁𝜋 𝑎 sin(
𝜆′−𝛽

𝜆
−

𝑚

𝑎
)) 

𝑁2 sin2(𝜋𝑎𝑠𝑖𝑛(
𝜆′−𝛽

𝜆
−

𝑚

𝑎
)) 

                                   (3.4) 

Where:  

-  𝐼0 represents the amplitude of the response. 

- 𝑏 represents the width of the gratings lens. 

- 𝑁 represents the number of gratings. 

- 𝑎 represents the step between the gratings 

- 𝑠𝑖𝑛𝑐2 (
𝜋𝑏𝜆′

𝜆
 ) represent the function that envelop the diffraction response. 

- 𝑚 represents the mode that we want to observe. For m = 0, the output does not 

move according to the wavelength. For that reason, we select the first mode, 

𝑚=1 where the amplitude of the output is higher than the superior modes. 
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________________________________________________________________________ 

Figure 9: A representation of the grating and the diffraction process. The output of the 
grating can be seen in different modes. A purple light formed by a blue and red light enters 
the grating, for a mode m=0, we will not be able to observe the diffraction, however, for 
the mode m = 1 and m = 2 we can clearly see the diffraction of the light into red and blue. 

A diffraction envelope encounters the modes represented by 𝐼0𝑠𝑖𝑛𝑐2 (
𝜋𝑏𝜆′

𝜆
 ) in equation 

(3.4) (hyperphysics.phy-astr.gsu.edu) 

 

________________________________________________________________________ 

By applying the small angle approximation, sin2(𝜋𝑎𝑠𝑖𝑛 (
𝜆′−𝛽

𝜆
))  can be 

approximated as 𝜋2𝑎2𝑠𝑖𝑛 (
𝜆′−𝛽

𝜆
)
2

 and by that, equation (3) can be written as follow:  

                  ℎ𝑟(𝛽, 𝜆′, 𝜆) ≈ 𝐴𝑠𝑖𝑛𝑐2 (𝑁𝜋 asin (
𝜆′−𝛽

𝜆
−

𝑚

𝑎
))                                            (3.5) 

In the ideal case, the output of the diffraction gratings for a monochromatic light is a perfect 

spectrum of Dirac that changes position on the spectral axis according to the wavelength 

value. In this report, the diffraction grating is not perfect, and will introduce a spectral 

blurring to the input. In equation (3.5),  𝜆′ is assimilated to 𝜆 but limited by the spectral 

PSF. The particularity of the PSF is that it changes while changing the wavelength value 

as shown in figure 10. The diffraction grating is a linear operator that produce non-

stationary outputs and transforms the wavelength into a spatial position. 
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________________________________________________________________________  

Figure 10: The diffraction gratings of a normalized response for 3 monochromatic light λ 
= 5µm, 15µm and 25µm, we can clearly see that the impulse response increases with the 
increase of the wavelength value since ℎ𝑟 depends on λ. 

 
______________________________________________________________________________ 

 

3.5.2. Diffraction gratings output 

For a linear and continuous input, the output of the diffraction gratings for a 

selected slit will be represented as follow: 

𝜙(𝑖,𝑗)𝑜𝑝𝑡(𝜆′, 𝛼) =  ∬ 𝜙(𝑖,𝑗)𝑜𝑝𝑡(𝛼, 𝛽, 𝜆)ℎ𝑟(𝛽, 𝜆′, 𝜆)
0

𝜆 𝛽
𝑑𝛽𝑑𝜆                                (3.6) 

Equation (3.6) is represented by continuous sum depending on 𝜆 and β. This double integer 

will lead to a degeneration phenomenon where a couple of (𝜆, 𝛽) may lead to the same exit 

wavelength λ’, and that’s also one of the reasons that led us to adopt the dithering method 

since by moving the telescope, the spatial dimension β is changed. Plus, the double integer 

allows the transition from a 3D object to a 2D object with one spatial dimension α and the 

output of the diffraction gratings that depends on the couple (β,λ).     

  

3.5.3. Diffraction gratings length calculations 

Equation (3.4) depends on unknown parameters such as the length of the gratings 

represented by  

𝐿 = 𝑁 × 𝑎                                                                       (3.7) 

 



22 
 

Where:  

- 𝑁 is the number of gratings. 

- 𝑎 is the step between the gratings. 

Neither 𝑁 or 𝑎 are known, instead, we know the spectral resolution 
𝜆

Δ𝜆
 for every channel 

(see table 1). A proposed method to calculate 𝐿 is adopted in this work, noting that we 

are not interested in calculating 𝑎 which controls the position of the response since we 

will use in the following chapter an approximation of the gratings response that is 

independent of 𝑎. Finding L consist of following these steps: 

1. Calculate the gratings PSF for a large number of 𝐿. 

2. Determine the FWHM of the responses which means finding Δ𝜆 

3. Calculate the error between the known spectral resolution 
𝜆

Δ𝜆
 and the measured 

one  

𝑒𝑟𝑟𝑜𝑟𝐿 = (  𝑒𝑥𝑎𝑐𝑡 −     𝐹𝑊𝐻𝑀)2                                      (3.8) 

4. Choose L as the minimizer of the error. 

________________________________________________________________________ 

Table 2: A representation of the different values of the gratings length L for the 
different channels 

Channels Wavelength L 

Channel 1a 4.89-5.77 924 

Channel 2a 5.65-6.64 895 

Channel 3a 6.52-7.66 836 

Channel 2a 7.49-8.78 813 

Channel 2b 8.65-10.14 796 

Channel 2c 9.99-11.71 763 

Channel 3a 11.53-13.48 700 

Channel 3b 13.37-15.63 556 

Channel 3c 15.44-18.05 498 

Channel 4a 17.66-20.92 474 

Channel 4b 20.54-24.40 455 

Channel 4c 23.95-28.45 400 

_________________________________________________________________________________ 
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3.6. Detector 
The 2D flux coming out of the diffraction gratings will hit the detector. This 

photodetector is composed of a CCD matrix that creates electrons when photons are 

absorbed. This matrix contains square elements or pixels of size 1024x1024 where each 

pixel size is noted d. The resolution on the detector varies between channel and they are 

represented in arcsec in table 1. The detector can be modeled as a double integer of the 

received flux on the surface of the detector and can be expressed as follow: 

𝑠(𝑥, 𝑦) =  ∫ ∫ 𝜙(𝑗,𝑘)𝑜𝑝𝑡(𝜆′, 𝛼)𝑑𝜆′𝑑𝛼
𝑦(𝑑+1)

𝑦𝑑

𝑥(𝑑+1)

𝑥𝑑
                                        (3.9) 
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4. Simulation and results 
 

The MRS model in the previous chapter was presented and explained in its continuous 

form. However, the detector receives a 2D data in its discrete form. Since the instrument 

model is very complex, it will be hard to obtain a discrete form of the instrument from the 

continuous form. In this chapter, we will consider that the sky observed is already in its 

discrete form having a resolution that we chose similar to the resolution of the detector (see 

table 1) plus, the components of the MRS instruments are also discrete. We chose to show 

simulations for the channel 2c of a 3D cube using MATLAB simulator.  

4.1. Spatial convolution 
The PSF is represented by a circulate matrix. In this case, the spatial convolution can 

be calculated using the Fourier transform and the PSF can be expressed as a diagonal 

matrix. The spatial convolution at every wavelength can be expressed as follow: 

ϕ𝑘
opt

= 𝐹𝑡𝛬ℎ𝐹𝜙𝑘                                                                                  (4.1) 

________________________________________________________________________ 

Figure 11: In the ideal case, the telescope observes a star in the space represented by a 
dot in the far field. figure (11) left represent the original 3D cube observed at λ = 10.138 
µm by the telescope. figure (11) right represent the cube at the same wavelength 
convoluted by the PSF 

 

________________________________________________________________________ 
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________________________________________________________________________ 

Figure 12:The spectrum axis for the original and blurred observed flux. We can clearly 
see that the blurring changes the observed object by blurring spatially the received cube 

 

_______________________________________________________________________ 

4.2. Cube spatial and spectral slicing 
The spectral and spatial slicing consists of multiplying the observed cube limited by 

the diffraction with a matrix of selection let [𝑾𝒋,𝒌] that slices the cube spectrally depending 

on the wavelength range desired to be observed and spatially depending on number of 

widths to be sliced in function of the spatial dimension β according to the chosen channel.  
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________________________________________________________________________ 

Figure 13: Representation of the IFU model that slices the image into 17 slices since in 
this report we are working on channel 2c (see table 1) at λ = 10.138 µm. 

 

________________________________________________________________________ 

Figure 14: The figure on the right is a dithered version of the figure on the left at the 
same spatial coordination observed at the same wavelength values. The dithering is 
0.196 arcsec which corresponds to 1 pixel on the detector. 

                     

 

________________________________________________________________________ 
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4.3. Diffraction gratings 
In this paragraph, we will discuss the output of the diffraction gratings for a given input 

and from the exact method we will explain an approximated method proposed by Denis et 

Al. Plus we will express the passage of the light in the diffraction gratings in its discrete 

form. 

4.3.1. Diffraction gratings approximation 

In the previous chapter, we have seen that the output of the diffraction gratings for a 

certain input depends on the spatial dimension β and on the spectral dimension λ. The 

output of the diffraction gratings in its discrete form for a single β is represented as follow: 

      𝑠[𝜆′] =  ∑ 𝜙(𝑗,𝑘)𝑜𝑝𝑡[𝜆] × ℎ𝑟[𝜆, 𝜆′]𝜆                                                       (4.2) 

Equation (4.2) represents the exact output of the gratings for any input. This method 

is proposed by Rodet el Al and it is feasible for every value on the spectral axis since it is 

easy to calculate the gratings response at any wavelength value and multiply it by the input 

value at the same wavelength. The complexity of this method appears when we want to 

sum the grating responses at different values of the wavelength. This complexity is due to 

the fact that we are summing a remarkable number of cardinal sinus.  

An approached model was proposed by Denis et AL consists of calculating the non-

stationary output of the gratings from the sum of stationary outputs using different versions 

of the weighted input. The use of the convolution in this approached method will simplify 

the complexity of the gratings output and will allow us to gain time by a factor of 5. This 

approximated method might add some unwanted information to the output of the gratings 

but in our point of view it has not such a great importance since the error between the two 

methods is low, plus, the diffraction grating response in equation (3.4) is already an 

approximated response.  

The approached method is represented by the following equation [3]: 

∑ (𝜙(𝑗,𝑘)𝑜𝑝𝑡 × 𝑤𝑘) ∗ ℎ𝑟
𝑘

𝑘                                                         (4.3) 

Applying this method consists of giving weights to every couple of pre-calculated 

response using equation (3.4) to obtain a collection of interpolated PSFs for the 

intermediate wavelength value of the couple. 

The passage from the exact model to the approached model is calculated as follow: 

- We consider in this demonstration that the exact pre-calculated responses are 

centered due to the fact that the approached model is the sum of the stationary 

weighted responses and we are not interested in their position. The 

approached diffraction response is the sum of two pre-calculated exact 

response ℎ𝑟
0 and ℎ𝑟

1 and can then be written as: 

ĥ[𝜆, 𝜆′] =  ℎ𝑟
0[𝜆′] + ℎ𝑟

1[𝜆′]                                                    (4.4) 
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- The non-stationary grating response is approximated by the sum of two 

stationary weighted grating responses. The output of the gratings for a 

monochromatic light at 𝜆 depends on the spatial resolution 𝜆′ so we shift ℎ𝑟 

from  𝜆′ to its correct position at 𝜆. 

ĥ[𝜆, 𝜆′] =  ℎ𝑟
0[𝜆 − 𝜆′] × 𝑤0[𝜆] + ℎ𝑟

1[𝜆 − 𝜆′] × 𝑤1[𝜆]                          (4.5) 

- Replacing the non-stationary response by the approximated version in 

equation (4.2):  

𝑠[𝜆′] = ∑ 𝜙(𝑗,𝑘)𝑜𝑝𝑡[𝜆] × [𝜆 ℎ𝑟
0[𝜆 − 𝜆′] × 𝑤0[𝜆] + ℎ𝑟

1[𝜆 − 𝜆′] × 𝑤1[𝜆]]                (4.6) 

- Developing equation (4.6) in function of the sum in λ:   

 

𝑠[𝜆′] =  ∑ 𝜙(𝑗,𝑘)𝑜𝑝𝑡 × [𝜆]𝑤0[𝜆] × ℎ𝑟
0[𝜆 − 𝜆′] + ∑ 𝜙(𝑗,𝑘)𝑜𝑝𝑡[𝜆] × 𝑤1[𝜆] × ℎ𝑟

1[𝜆 − 𝜆′]𝜆𝜆         (4.7)                

                             

- Writing (4.7) in its convolution form: 

 

𝑠[𝜆′] = ∑ ∑ 𝜙(𝑗,𝑘)𝑜𝑝𝑡[𝜆] × 𝑤𝑘[𝜆]ℎ𝑘[𝜆 − 𝜆′]𝜆   𝑘                                      (4.8) 

  𝑠[𝜆′] = ∑  (𝜙(𝑗,𝑘)𝑜𝑝𝑡 × 𝑤𝑘) ∗ ℎ𝑟
𝑘

𝑘                                                            (4.9) 

- Summing the approached responses for every 𝛽 value in the slice 

 

     𝑠[𝜆′] = ∑ ∑  (𝜙(𝑗,𝑘)𝑜𝑝𝑡 × 𝑤𝑘) ∗ ℎ𝑟
𝑘

𝑘𝛽                                                     (4.10) 
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______________________________________________________________________________ 

Figure 15: A representation of the superposition of the exact and approached method for 
the channel 2c 

 

______________________________________________________________________________________ 

Figure 16: Error representation between the exact and approached method. 

 

______________________________________________________________________________________ 
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4.3.2. Diffraction gratings discrete calculation 

As explained in the image slicing, the slice should not be very thin because it will 

set the observed flux to zero, meaning that the slice entering the cube depends on the spatial 

dimension β. Taking the 2D flux represented by the spatial dimension α and the spectral 

dimension λ on each value of β, each slice will undergo the following steps: 

-  Multiplication by the weight given from pre-calculated response on the left 

and on the right of the wavelength value desired to be calculated  

- Convolution of each weighted input by its appropriate gratings response noted 

as ℎ𝑟. 

- Summation of the different versions of the convoluted weighted inputs.  

- Summation the resulting 2D flux for each β value in the slice. 

 

For a given beta, the explicit calculation of the gratings will be expressed as: 

[

𝒔𝟏

⋮
𝒔𝑵

] = [ 𝑰𝟏 … 𝑰𝒌] [
𝑪𝟏 ⋯ 𝟎
⋮ ⋱ ⋮
𝟎 ⋯ 𝑪𝒌

] [
𝑾𝟏

⋮
𝑾𝒌

] [

𝜙(𝑗,𝑘)𝑜𝑝𝑡
𝟏

⋮
𝜙(𝑗,𝑘)𝑜𝑝𝑡

𝑵

]                                  (4.11) 

Where:  

- 𝜙(𝑗,𝑘)𝑜𝑝𝑡 represents the spectra for a fixed β value with a length of N = 1024 

in our case. 

 

- 𝑊𝑘 represents the weight matrix where k is the number of weighted versions 

that will multiply the input. For our calculation, k = 2 considering the weights 

given from the response on the left and right of the approached response. Each 

W component in the vector is a matrix of size 1024x1024 in our case and is 

represented as follow: 

                           𝑾𝒌 =

[
 
 
 
𝒘𝟏

𝒌 𝟎 … 𝟎
𝟎 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 𝟎
𝟎 … 𝟎 𝒘𝑵

𝒌 ]
 
 
 
                                            (4.12) 

 

- 𝐶𝑘  represents the gratings response appropriate to the weighted input. Each 

component in the matrix C is a circulant matrix with a size of 1024x1024. So, 

each component in the matrix C are represented as a diagonal matrix.    
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________________________________________________________________________ 

Figure 17: The received 2D slice image shown on the detector with a white noise 
added. It is the output of the channel 2c slice 9. In this figure we can remarkably see 
the spectral dimension is spread on the detector in function of the spatial dimension  

 
________________________________________________________________________ 

Figure 18: A representation the spectra of the received data with noise of channel 2c 
slice 9. We can see the effect of the gratings response on the spectra where we can see 

effects of the cardinal sinus on the image  

 

______________________________________________________________________________ 
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Reconstruction and inversion methods 
5. Reconstruction of the astrophysics cube 

 

In the previous section, we have attributed a direct discrete model for the MRS 

instrument where all the operators that physically changes the observed object are linear 

and derivable. It was necessary to identify these operators in order to reconstruct the 

original 3D cube from a received 2D image shown on the detector, and use inversion 

approaches to enhance the reconstruction and inverse the effect of the spectral and spatial 

PSF on the object as well as the noise added through the channel. The direct linear model 

of the instrument is represented as follow: 

𝑠 = 𝐻𝑥 + 𝑛                                                                  (5.1)   

Where:  

- s is the received 2D image 

- H represents the operator that the observed object will undergo before hitting 

the detector 

- x is the original observed cube represented as 𝜙(𝛼, 𝛽, 𝜆) in the previous chapter 

- n the white noise added through the channel. 

5.1. Least squares method 
Since the components of the MRS are linear and derivable, we can say that the 

operator H is linear and derivable and as a result we chose the least square method to 

inverse our received image. 

- The least square criterion is represented as: 

                                           𝐽𝑙𝑠(𝑥) =  ‖𝑠 − 𝐻𝑥‖2                                                                    (5.2) 

   

- By developing the criterion, we obtain: 

                                                           𝐽𝑙𝑠(𝑥) = (𝑠 − 𝐻𝑥)𝑡(𝑠 − 𝐻𝑥)                                                (5.3) 

                                                       𝐽𝑙𝑠(𝑥) = 𝑥𝑡𝐻𝑡𝐻𝑥 − 2𝑠𝑡𝐻𝑥 + 𝑠𝑡𝑠                                            (5.4) 

- By nullifying the calculated gradient of 𝐽𝑙𝑠 we calculate the minimizer 

represented as: 

                                                                             𝑥̂𝑙𝑠 = (𝐻𝑡𝐻)−1𝐻𝑡𝑠                                                      (5.5) 

5.2. Ill-posed problem and regularization 
The operator 𝐻 in equation (5.5) is not stable, meaning that a small variation in the 

values of the received image can lead to a noise explosion in the reconstructed cube. To 

avoid noise explosion, we must add a penalty to the equation to regulate the operator 𝐻.  
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- The penalized criterion is the represented as: 

                                             𝐽𝑃𝐿𝑆(𝑥) = ‖𝑠 − 𝐻𝑥‖2 + 𝜇 ‖𝐷𝑥‖2
                                                          (5.6) 

                                      𝐽𝑃𝐿𝑆(𝑥) = 𝑥𝑡𝐻𝑡𝐻𝑥 − 2𝑠𝑡𝐻𝑥 + 𝑠𝑡𝑠 + 𝜇𝐷𝑡𝐷𝑥                                                 (5.7) 

- By nullifying the calculated gradient of 𝐽𝑝𝑙𝑠, the penalized minimizer is 

represented as:  

                                      𝑥̂𝑝𝑙𝑠 = (𝐻𝑡𝐻 + 𝜇𝐷𝑡𝐷)−1𝐻𝑡𝑠                                                  (5.8) 

5.3. Simulation and results 
We have attributed a direct model for the MRS model noted 𝐻 in equation (5.1), in 

order to apply the inversion approach, we must find the transpose of each component in 

the MRS instruments to find 𝐻𝑡 as well as the optimal value of the regularization term 𝜇.  

5.3.1. Transpose calculation 

We will give an explicit theoretical form of the transpose discrete direct model for 

one slice in the detector. For a whole cube reconstruction, we make the same calculations 

for each slice at every channel. 

The transpose model of the direct model is applied following the next steps: 

1. Each 2D slice is transform to a 3D slice with the exact number of 𝛽 as the slicing 

in the previous chapter 

2. For each 𝛽  value in the slice we create 2 exact versions of the data. Every 

approached weighted response is convoluted by the left pre-calculated response 

from equation (3.4) and multiply it by the its appropriate weight. We do the same 

for the second version with the right pre-calculated response. 

3. We sum both versions for each 𝛽.  

The first three steps can be resumed as follow: 

[𝒙𝟏 … 𝒙𝒏] = [𝑾𝟏 … 𝑾𝒌] [
𝑪𝟏

𝒕 ⋯ 𝟎
⋮ ⋱ ⋮
𝟎 ⋯ 𝑪𝒌

𝒕
] [

𝑰𝟏

⋮
𝑰𝒌

] [

𝒔𝟏

⋮
𝒔𝒏

]                                      (5.9) 

- Each matrix 𝐶𝑘 is a circulate Toeplitz matrix that can be diagonalized in Fourrier   

 

4. The transpose output of the diffraction gratings is the multiplied by the transpose 

of the selection matrix in paragraph 4.2, represented as [𝑾𝒋,𝒌]
𝒕
 

5. Calculate the transpose of equation (4.1), since the optic PSF is a circulate 

matrix, we compute the PSF through FFT diagonalization. The transpose of the 

spatial optic response is represented as follow:  

 

𝑥̂ = 𝐹𝑡𝛬ℎ
+𝐹𝑥                                                                (5.10) 
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5.3.2. Calculate optimal 𝜇 

𝜇 represents the regularization term, for a very low 𝜇, the reconstructed image will 

be very edgy, as for a high µ, the reconstructed image will be smoothed. We must find the 

optimal regularization term to apply it in equation (5.9).  A proposed method is to find the 

m error between the original cube and the reconstructed cube for different value of 𝜇 and 

keep the 𝜇  corresponding to the minimum error. The error is calculated by using the 

following formula:  

                        ∑ ∑ ∑ (𝑥(𝛼, 𝛽, 𝜆) − 𝑥̂(𝛼, 𝛽, 𝜆)) 2𝜆𝛽𝛼                                              (5.11) 

 

______________________________________________________________________________ 

Figure 19: A graph representing the error between the minimizer and the original cube, 
for 𝜇 = 10−3.5 we can have the minimum error between the two cubes. 

 

______________________________________________________________________________ 

 

5.3.3. Optimization algorithm 

It is very complex to calculate the minimizer in equation (5.9) since (𝐻𝑡𝐻 +

𝜇𝐷𝑡𝐷)−1 is very complicated to calculate. However, optimization algorithms are used to 

solve iteratively a complex system of linear equations. The gradient calculated in equation 

(5.9) can be written in its linear form: 

                                       𝛻𝐽𝑝𝑙𝑠(𝑥̂) = 𝐴𝑥̂ − 𝑏 = 0                                                                  (5.12) 

Where: 
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-  𝐴 = 𝐻𝑡𝐻 + 𝜇𝐷𝑡𝐷 

-  𝑏 = 𝐻𝑡𝑠 

The same 𝑥̂ used to minimize the 𝐽𝑝𝑙𝑠(𝑥) is also the solution for the linear equation  𝐴𝑥 =

𝑏. The minimizer is known to be unique since 𝐽𝑝𝑙𝑠(𝑥) is convex.  

 After writing the quadratic function to its equivalent in equation (5.13), we will 

adopt the gradient conjugate strategy to solve the optimization problem where the iteration 

is represented as: 

                                                  𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘                                                                                (5.13) 

Where: 

- 𝑝𝑘 is the search direction for each iteration 𝑘 

- 𝛼𝑘 is the step length for each iteration 𝑘. 

The method consists of starting from a chosen position 𝑥0 and then step walk in a linear 

convergent form towards the solution by computing the direction and the step length for 

every iteration (see annex1) 

 

________________________________________________________________________ 

Figure 20: A representation of the convergence of the solution using the gradient 

conjugate(https://doi.org) 

 

________________________________________________________________________ 
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5.3.4. Results 
______________________________________________________________________________ 

Figure 21: A reconstructed cube without inversing the effect of the spatial and 
spectral PSFs and the white noise. We can still se the effect of the convolution 

near the stars that adds unwanted information. 

            
______________________________________________________________________________ 

Figure 22: A reconstructed cube with the optimal 𝜇= 3.1623e-4. In this image 
we can see a major role of the artifacts, and that’s a problem encountered 

when using the least square methods 

 

______________________________________________________________________________ 
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______________________________________________________________________________ 

Figure 23: Two plots representing the spatial dimension 𝛽 for 𝛼 = 50 𝑝𝑖𝑥𝑒𝑙𝑠 
and 𝜆 = 100 𝜇𝑚. The first plot corresponds to the original cube and the 

second plot corresponds to the minimizer 

 
______________________________________________________________________________ 
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______________________________________________________________________________ 

Figure 24: Two plots representing the spatial dimension 𝛽 for 𝛼 = 50 𝑝𝑖𝑥𝑒𝑙𝑠 and 𝜆 =
100 𝜇𝑚. The first plot corresponds to the blurred cube and the second plot corresponds 

to the minimizer. We can clearly notice that the minimizer has inversed the spatial 
convolution effect 

 

______________________________________________________________________________ 
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________________________________________________________________________________________________ 

Figure 25: A representation of the spectral axis for  𝛼 and 𝛽 = 50 pixels. We notice that 
at the end, the specter of the reconstructed cube has weird effects, that comes from the 
fact that we used FFT computation that considers the operator H is circulate, but in the 

matter of fact, the operator is not circulant which causes these artifacts at the 2 extreme 
sides of the spectral axis 

 

______________________________________________________________________________ 
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Conclusion and perspective 
6. Conclusion 
In this report, we studied each optical component of the MRS instrument, and gave 

the explicit mathematical formula for each of them in order to obtain a direct model that 

is faithful to the real simulator. We then discretized each of the components to be able to 

write and simulate of the MRS model using MATLAB simulator. 

The last part of the report was contributed to the reconstruction of the original cube 

using inversion approaches, and showed simulations and cube reconstruction for one 

channel. The least square method might not be the perfect solution for the reconstruction 

in our case. Another solution will be proposed in the continuity of this internship. 

 The originality of this work was the use of the approached PSF model proposed by 

Denis et Al and apply it in our study at the diffraction gratings where its PSF introduce a 

non-stationarity to the model.  

7. Perspectives 
In this work, we built an algorithm that is capable to reconstruct the original data 

for only one channel, plus we used a simple reconstruction method that produces artifacts 

and not very optimal. In the future work, we will work on the reconstruction of a whole 

cube for all the channel with more practical astrophysics data. 

The direct model of the MRS instrument will be used in the future to be merged with 

the direct model of the imager (MIRIM) of the MIRI instrument developed by the PHD 

student HADJ-YOUSSEF Amin. The main reason behind this fusion is due to the fact that 

the MRS have a limited spatial resolution but a view but a high spectral resolution, as for 

the imager, it has a high spatial resolution but a limited spectral resolution, and our purpose 

is to build a simulator that is capable to work on hyper resolution for spatial and spectral 

measures. Many problems will be encountered specially the heterogeneity of the filters of 

both instruments, plus the blurring that will be always present by the PSF. 

This merged direct model will be used to reconstruct the 3D cube. The reconstructing 

method will mainly be consisting of these following steps: 

1. Estimate 𝑥̂ from the MRS model 

2. Estimate the specter noted 𝑠𝑖  from 𝑥̂ using the source separation method 

3. Re-estimate 𝑥̂ 𝑎𝑛𝑑 𝑠𝑖 using the merged model of the two instruments (Boucas-

Dias) 
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I. Annex 1 
 

The gradient conjugate method is based on the A-conjugate direction model where a set of 

vectors {𝑝0 …𝑝𝑛−1}  are conjugate with respect to the matrix 𝐴 as 𝑝𝑘−1
𝑡 𝐴𝑝𝑘. 

This method is an iterative method that converges towards the solution following these 

steps: 

- Choose initial position 𝑥0 

 

- Calculate the initial residual 𝑟0 = 𝐴𝑥0 − 𝑏  
 

- Calculate the first step direction  𝑝0 = −𝑟0 

 

- Compute the step length 𝛼𝑘 =
𝑟𝑘

𝑡𝑟𝑘

𝑝𝑘
𝑡𝐴𝑝𝑘

  where k is the iteration number noting 

that in this method all the iterations have the same step size. 

 

- Having 𝑝0 𝑎𝑛𝑑 𝛼0 we can compute the first iteration 𝑥1 = 𝑥0 + 𝛼0𝑝0 

 

- The residual for the following iteration is 𝑟𝑘+1 = 𝑟𝑘 + 𝛼𝑘𝐴𝑝𝑘  

 

- The new step method is expressed as 𝑝𝑘 = −𝑟𝑘 + 𝛽𝑘𝑝𝑘−1 where 𝛽𝑘  impose 

the condition of 𝑝𝑘−1
𝑡 𝐴𝑝𝑘 and expressed as   𝛽𝑘 =

𝑟𝑘+1
𝑡 𝑟𝑘+1

𝑟𝑘
𝑡𝑟𝑘

  

 

- The next step direction is calculated as:  𝑝𝑘+1 = −𝑟𝑘+1 + 𝛽𝑘𝑝𝑘 

 

- We can finally calculate the iterative solution 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘 
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