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This work is devoted to the intrinsic difficulty of sampling from high-dimensional
distributions and to its applications in inverse problems. After a brief introduction on
inverse problems, is presented the Rejection Perturbation Optimization algorithm, pro-
posed in [1], that enables efficient sampling of high-dimensional Gaussian distributions.
The algorithm is then applied to a unsupervised super-resolution microscopy imagery
problem in a Bayesian framework. Its performance and results are compared to those
obtained using a supervised optimization technique. Following those results, it is
proposed a general method of constructing Mixtures of Gaussians that can efficiently
be sampled from and used in unsupervised inverse problems. The constructed mixture
is then used in order to obtain the edge preserving distribution proposed in [2]. The
distribution is applied to the previous problem and the results are compared to those
obtained earlier.
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1 Inverse Problems and Bayesian
Approaches

In this chapter are presented the main topics and issues related to this work. It allows
readers that are not familiar with inverse problems to have a broad view of it. Here
is also defined most of the notation that will be used in the whole work. In the last
section are presented the specific issues of inverse problem that are addressed.

1.1 Inverse Problems

1.1.1 What are inverse problems

Inverse problems is the mathematical and engineering approach, ranging from as-
tronomy images to audio processing, that deals with the problem of, having a set
of observations, trying to determine what is the original signal that caused those
observations. For this purpose, inverse problem is generally associated with two other
problems, that together, compose the broad class of inverse problem.

• The forward problem: It is the work of determining a model which can explain
how any set of input signal is changed into the output observations. Because of
the inherited complexity of many problems, the model is normally a simplified
version of reality that tries to mostly explain the process of data formation.

In this work, models will be written as:

y = Hx + ε (1.1)

where

– y ∈ Y ⊆ Rm is the vector of output observation

– x ∈ X ⊆ Rn is the input signal

– H : X → Y is a linear operator defined by a matrix

– ε is a multivariate real random variable of dimension m called noise, which
represents everything that the model does not explain.

• The instrumentation problem: It deals with where and how should the obser-
vation y be taken in order to have the best information about the searched
object.
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• The inverse problem: By using the model H determined by the forward problem
and the observation y determined by the instrumentation problem, retrieve the
original input signal x. Because of the simplification done in the construction of
the model, represented by the noise ε, it is not possible retrieve the exact value
of x. Therefore the inverse problem focus in the creation of an estimator x̂.

1.1.2 Ill posed problems and estimation

Some reader might be thinking, as they read this introduction, that the problem can
simply be solved by using the Ordinary Least Squares. Having some mathematical
fluency, one could easily define a criterion J(x) that needs to be minimized:

min
x∈Rn

J(x) = ‖y −Hx‖2

= x†H†Hx− 2x†H†y + y†y (1.2)
First order conditions: ∇J(x) = 2H†Hx− 2H†y = 0

⇐⇒ x̂ = (H†H)−1H†y

Second order condition: ∇2J(x) = 2H†H � 0
2H†H = 2‖H‖2 which is by definition � 0

therefore x̂ is a minimum of J(x)

where H†1 is the transpose conjugate and H†H is a square matrix with a inverse
matrix and x̂ is the estimation of the input signal.

However, as it is state in [3], many real applications of inverse problem are ill posed
in the sens of Hadamard. This means that the problem does not satisfies at least
one of Hadamard’s condition for a well posed and well conditioned problem. This
conditions are:

1. Existence: For any y ∈ Y there exists at least one estimator x̂

2. Unicity: The solution is unique, which in our case is equivalent to say that
Ker(H) = 0

3. Stability: The behavior of x̂ changes continuously with y which means that a
small variation ∂y → 0 creates a small ∂x̂→ 0

Inverse problem often do not at least one of those conditions. It is to note that
in some cases, the time continuous problem is stable, however, due to the numerical
instability, the time discrete problem is not; those are called ill conditioned problems.
One can check in [3] for some classical examples of ill posed and ill conditioned
problems.

1When dealing with real matrices, the notation HT will be used instead of H†
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1.1.3 Bayesian Approach and Regularization

In order to achieve the Stability condition, the Bayesian approach is used. The Bayesian
approach defines a probabilistic framework that allows one to easily incorporate
information, known or supposed, into the inverse problem in order to stabilize it.

The first thing to do is to change the point of view and to consider x as a realization
of a random variable X with probability density function p(x) and to consider y as
the realization of a random variable Y with probability density function Y = p(y).
In this context, it is therefore possible to use the Bayes rule:

p(x|y) = p(y|x)p(x)
p(y)

where:

- p(x|y) is called the posterior distribution

- p(y|x) is called the likelihood of the signal whereas the noise (normally just
called likelihood)

- p(x) is called the prior distribution of X (normally just called prior)

In the Bayesian interpretation, it is common to see p(y) as a normalizing constant
that is not related to X. Therefore, it is usual to simplify the notation by writing:

p(x|y) ∝ p(y|x)p(x) (1.3)

One can now define a probability density function to p(y|x) and to p(x). The most
common usual thing to do is to define:

ε ∼ N
(
0, (γn)−1I

)
⇒ p(y|x) ∝ exp

(
−1

2
(
(y −Hx)Tγn(y −Hx)

))
(1.4)

Dx ∼ N
(
0, (γd)−1I

)
⇒ p(x) ∝ exp

(
−1

2((Dx)Tγd(Dx))
)

(1.5)

Both γn and γd are called hyper-parameters (or hidden variables). In this case
they are the precision matrix (i.e., the inverse of the variance) of two Gaussians
distributions. In a more general way, hyper-parameters are all the variables that are
used to characterize the probability density function of the random variables.
The noise is therefore modeled as a centered uncorrelated Gaussian of precision

matrix γdI. Assigning a normal distribution to the noise is generally consider as a
good hypothesis because of the central limit theorem.

D is called the regularization operator and it is a positive defined matrix of size
n × n. There are several different types of regularization operators and each one
has a different usage depending on the problem, the one used in this work will be
described ahead. For now, the important thing to understand is that the idea of the
regularization operator is to set a prior not directly on x but on the behavior of x
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to its neighbors. Here the prior is that Dx follows a Gaussian distribution, centered,
and of precision matrix γdI.
The best way to understand what is the regularization operator is to show an

example of one. For instance x is an audio signal, a possible regularization operator
could be the difference between the current and the previous samples. Stating that
Dx ∼ N(0, (γd)−1I) is to make the prior that two neighbor samples are likely to be
similar, and therefore their difference would be near 0. The matrix associated to this
regularization operation is:

D =


1 −1 0 · · · 0
0 1 −1 0 · · ·
... . . . · · ·

0 · · · 0 1

 (1.6)

Independently of the regularization operator that is chosen, using the probability
functions defined in 1.4 and in 1.5 and substituting them in 1.3 gives:

p(x|y) ∝ exp
(
−1

2
(
(y −Hx)Tγn(y −Hx) + xT DTγdDx

))
(1.7)

There are two main estimators that can be used to this problem.
The first one is the Posterior Maximum (PM)2 estimator. Using the optimization

theory, maximizing p(x|y) i.e., the most likely input signal knowing y, is equivalent
to minimize:

− log(p(x|y)) = J(x) = 1
2((y −Hx)Tγn(y −Hx) + xT DTγdDx). (1.8)

Therefore, by using the Ordinary Least Square in an equivalent way of the one used
in 1.2 the estimator is:

x̂ = (γnHT H + γdDT D)−1γnHT y. (1.9)

The second estimator that can be used is the supervised Posterior Expectation
(PE)3. This estimator consist in approximating the expectation of p(x|y) by the
empirical mean of K samples xi taken p(x|y):

x̂ =
∫
Rn

xp(x|y)dx ≈ 1
K

K∑
i=1

xi. (1.10)

The PE has the disadvantage that it needs a large K in order to approximate p(x|y)
expectation. However, it has the advantage that the estimator variation can also be
approximated:

2In french it is called Maximum A Posteriori (MAP)
3In french it is called Espérance A Posteriori (EAP)
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σ̂2 =
∫
Rn

(x− µ)2p(x|y)dx ≈ 1
K

K∑
i=1

x2
i − x̂2 (1.11)

In some applications, as astronomy, knowing the standard deviation in each pixel is
an important information for the application. Therefore, being able to approximate it
is an important advantage for PE.

As it can be seen, in both approaches x̂ depends on the values of γd and of γn. One
needs to calculate several x̂ with different values of the ratio γd/γn in order to find the
one that give the best result. This can be rather tricky if calculating x̂ takes time or
in more complex models where there are more hyper-parameters. Besides that, both
method rely on the paradigm of considering the hyper-parameters as known and then
testing several different of them with human supervision. For this reason those are
called supervised approaches. In the next section will be introduced the unsupervised
approach where those hyper-parameters are estimated.

1.2 Unsupervised Approach
1.2.1 A Different Paradigm
As it was said in the previous section, the unsupervised approach is a change of
paradigm as it aims to estimate the values of the hyper-parameters in a probabilistic
way. In order to do so, the hyper-parameters will be seen as random variables; this is a
complete Bayesian approach of the problem. In this new interpretation, the supervised
approach is one where γn and γd are seen as known realization of respectively Γn and
Γd. For instance, with this change of view, the equation 1.7: (written bellow)

p(x|y) ∝ exp
(
−1

2
(
(y −Hx)Tγn(y −Hx) + xT DTγdDx

))
becomes:

p(x|y, γn, γd) ∝ exp
(
−1

2
(
(y −Hx)Tγn(y −Hx) + xT DTγdDx

))
.

For the rest of this work, this complete Bayesian approach will be the one used. As
it will be seen, this way of treating the problem enables a great versatility of methods.
Furthermore, it allows to know exactly what are the hypothesis that are been made
and to use them in the best way to solve the problem.
So, being equipped with random variables to the hyper-parameters, they can also

be considered as unknown and the probability distribution is p(x, γn, γd|y). Using the
Bayes rule, the problem is:

p(x, γn, γd|y) ∝ p(y|x, γn)p(x|γd)p(γn)p(γd). (1.12)

There are many possible choices for the prior distributions of p(γn) and of p(γd).
The most common is to choose diffuse non informative priors and the most common
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of them is Jeffreys prior. Jeffreys prior has the property of being scale invariant, non
informative and diffuse. For a normal distribution, the Jeffreys prior is a gamma
distribution of parameters γ ∼ G (0,∞) which is an improper prior. As it will be seen
ahead, this will not be a problem if the likelihood brings enough information. The
hyper-parameters have therefore as probability density function:

p(γn) ∝ γ−1
n

p(γd) ∝ γ−1
d

When applying this priors, 1.4 and 1.5 to 1.12, the posterior distribution becomes:

p(x, γn, γd|y) ∝ γ−1
n γ−1

d exp
(
−1

2
(
(y −Hx)Tγn(y −Hx) + xT DTγdDx

))
(1.13)

To be able to explore this probability distribution in order to solve the inverse
problem, a last mathematical tools needs to be introduced: the Gibbs Sampler.

1.2.2 Gibbs Sampler
The Gibbs Sampler allows to take samples from a multivariate distribution that cannot
be directly sampled but from which the conditional posterior distributions of each
variable can easily be sampled. Algorithm 1 describe how the Gibbs Sampler can be
used to sample from 1.13.
Algorithm 1: Gibbs Sampler
while number of samples not achieved do

1. sample from:

p(x|y, γn, γd) ∝ exp
(
−1

2
(
(y −Hx)Tγn(y −Hx) + xT DTγdDx

))
∝ exp

(
−1

2(x−m)(γnHT H + γdDT D)(x−m)
)

(1.14)

where m = (γnHT H + γdDT D)−1γnHT y

2. sample from:

p(γn|y, x, γd) ∝ γM/2−1
n exp

(
−1

2(y −Hx)Tγn(y −Hx)
)

3. sample from:

p(γd|y, x, γn) ∝ γN/2−1
d exp

(
−1

2xT DTγdDx

)

As it can be seen, p(x|y, γn, γd) is a multivariate normal distribution and p(γn|y,x, γd)
and p(γd|y,x, γn) are gamma distributions. Furthermore, even if Jeffreys prior is
improper the hyper-parameters likelihood is proper. This can still become a problem
as the likelihood might not bring enough information to distribution.
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The interesting thing about the Gibbs Sampler is that the values of γn and of γd

are adjusted in a unsupervised way. There is therefore no need to test different values
of hyper-parameters to discover those that maximize the probability, the algorithm
does it by itself.
Now that it is possible to sample from the distribution, the Posterior Expectation

(PE) estimator described in 1.10 can be applied to the samples xi drawn from
p(x|y, γn, γd) during the Gibbs Sampling. Therefore, x̂ will be the estimation of the
original input signal x that the inverse problem aims to determine.
This last point ends the explanation on the generalities about Inverse Problems.

In the next section it will be described the specificities this work will be focusing on
before entering on what was developed.

1.3 The Problem Treated in this Work
1.3.1 High-Dimensional Non-Stationary Problems
From the generalities about Inverse Problems that were presented previously, one
understands the importance of sampling from distributions when using PE estimator
for solving Inverse Problems. However, sampling from distributions can be rather
complicated, especially when using high dimensional distributions [4].In order to better
understand the problems, let us see an example.
Taking for instance a gray scale image of 256× 256 pixels, which is rather a small

image. This means that the size of the vector x is 65536. Therefore the precision matrix
of p(x|y, γn, γd) is (γnHT H+γdDT D) 1.14 and its size is 65536×65536 = 4294967296.
The first problem is that this matrix has a size of 32Gb that would need to be stored
in the computer’s RAM, and there is no need to say that most computers today do
not have this kind of capacity.

The second problem is that, even if one would have a computer that has enough mem-
ory for storing those matrices, sampling from the multivariate Gaussian distribution is
not simple. According to [5] the classical way to sample N(m, (γnHT H +γdDT D)−1)
would be:

xi = m + Rσ.

Where:
- R is the Cholesky decomposition of γnHT H + γdDT D

- σ ∼ N(0, I) of dimension n
However, finding the Cholesky decomposition generally requires O(n3) operations [1]
which makes impracticable to apply this method in high-dimensional problems.

A common solution to overcome this issue is to build the model of the forward
problem using only convolution operators i.e., circular matrices, that have the property
of being diagonalizable in the Fourier domain[3]. If both H and D are circular, then
the sampling can be achieved with:

xi = m + F †((ΛH + ΛD)†(ΛH + ΛD)
√

(γdΛH + γdΛD)−1Fσ)
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where:

- F is the matrix of the FFT operator

- ΛH and ΛD are the diagonalization in the Fourier domain of H and D

- σ ∼ N(0, I) of dimension n

The solution of modeling the problem using only convolution operators is a good
one in several cases, but it is generally a very restrictive one. This work aims to
study algorithms to efficiently sample from high-dimensional Gaussian that are not
diagonalizable in the Fourier domain. Those are called non-stationary problems. Those
algorithm will be applied to solve an inverse problem related to microscopy images
that will act as a case study. This inverse problem is the subject of the next paragraph.

1.3.2 Structured Illumination Microscopy

Structured Illumination Microscopy (SIM) is a type of optical microscopy that aims to
achieve a better resolution by changing illumination patterns. This paragraph has as
objective to give an overview SIM and how a Bayesian approach can be used to have
better results; a better description of the problem is given in [6]. The issue that SIM
tries to solve is that, because of diffraction phenomenon, the resolution of microscopes
is limited. The main idea of SIM is that, by changing the sample illumination pattern
in a way that the diffraction limitation can be overcome. The change of illumination
causes an aliasing through modulation and exploring this aliasing allows to recover
information beyond the cutoff frequency in order to reconstruct the high resolution
image. In [6] it is proven that in order to accomplish this reconstruction, only four
images are needed to be taken, one centered and three others with phase shifting.
This overview explained, the forward problem can be studied.

The model aims to reproduce the image acquisition that is done by the microscope.
The forward model is:

y = OMRx + ε (1.15)

where:

- x is a vectored version of the image

- R is a replication matrix that copies the x four times i.e., R = [IIII]T

- M is a bloc diagonal matrix where each bloc’s diagonal element corresponds to
the modulation pattern chosen for each image taken

- O is the optical transfer function of the microscope’s lens, and therefore a
convolution operator; O depends on the equipment used but this does not
change the algorithm principle. The optical transfer function used in the work
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has as convolution mask: 
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1


- ε is the noise

As it can be seen, the operator H = OMR is not a convolution operator and therefore
it is not diagonalizable in the Fourier domain. As it was seen in the previous paragraph,
this is an issue as being diagonalizable in the Fourier domain is one of the main tools
when dealing with high-dimensional distributions and therefore other methods to
sample will be needed to treat this problem.

1.3.3 Quantifying the estimator quality

As this work is on the quality of algorithms, it will be tested on a known image. In
this case, the algorithms will be applied on the popular image The Cameraman that
can be seen in Figure 1.1. The use of this image is made primarily because of its
borders that present a challenge to techniques of image restoration. In order to verify
the quality of the estimation, the Euclidean norm will be used, i.e., ‖x− x̂‖.

Figure 1.1: The Cameraman, image where the test will be made

Another important image is the image simulated by the forward problem. In Figure
1.2 the four noised images from the SIM problem to which will be applied the inverse
problem estimator. The precision of the applied noise is γn = 0.1 i.e., the variance is
σ = 100).
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Figure 1.2: The four images created by the forward problem

The presentation of this forward model and of the image that is treated concludes
this rather introductory chapter which lays down the basis of this work. The next
chapter will describe an algorithm that can efficiently sample from high-dimensional
Gaussian that was applied to the SIM problem in [6]. Next chapter will also explain
the improvements that were made in this algorithm in order to have better and faster
results.
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2 Gaussian Prior
This chapter introduces the use of Gaussian priors to solve the SIM problem. The
Rejection Perturbation Optimization algorithm that is used in the work to sample
from high-dimensional non stationary Gaussian is detailed as well as its faster version.
Different estimations are calculated using the Posterior Maximum, and the supervised
and unsupervised Posterior Expectation. In the last section the results obtained are
compared and analyzed.

2.1 Hypothesis made
2.1.1 Likelihood
The forward model of the SIM is, as described in 1.15:

y = OMRx + ε = Hx + ε

The choice of noise that is made is the same one that in 1.4, i.e., ε ∼ N(0, (γn)−1I),
which is an independent identically distributed noise (i.i.d)

p(y|x, γn) ∝ γM/2
n exp

(
−1

2((y −Hx)Tγn(y −Hx))
)

(2.1)

2.1.2 Regularization Prior
There are two classical regularization operator, the Laplacian operator, and the
Gradient operator. The two are known for having different behaviors and to represent
different priors. Both of them will be tested in order to be able to compare their
results.
The Laplacian has as operation mask:

h = 1
8

 0 −1 0
−1 4 −1
0 −1 0


The Gradient has two regularization mask, one for the lines and one for the colons:

hl = 1
2
[
1 −1

]
and:

hc = 1
2

[
1
−1

]
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The regularization matrices (that will not be explicitly written in here but that are
easy to deduce) D for the Laplacian and Dl and Dc for the Gradient are by definition
convolution matrices and therefore are diagonalizable in the Fourier domain. However,
those matrices have the problem of not being positive defined. This happens since the
mean level, represented in the Fourier domain by the first coefficient, is zero. This is
obvious as both represent differences and therefore are unable to observe the mean
level of the image. This become a problem if wanting to use those matrices as precision
matrices of Gaussian distributions. Even if technically an improper prior could be
use, the approach that was made was the one described in [2] which is equivalent to
introduce a small positive value δ in the place of the zero of the diagonalized in the
Fourier domain matrix, making it positive defined.
The choice of prior distribution for both regularization operation is of a Gaussian

distribution.

For the Laplacian:

p(x|γd) ∝ γN/2
d exp

(
−1

2xT DTγdDx

)
For the Gradient:

p(x|γlγc) ∝ det
(
γlD

T
l Dl + γcD

T
c Dc

)1/2
exp

(
−1

2
(
xT DT

l γlDlx + xT DT
c γcDcx

))

2.2 Posterior Maximum
2.2.1 Conjugate Gradient
The Conjugate Gradient (CG) is an algorithm that is classified in the broad class of
Gradient Descent. This class of algorithm uses the direction given by the gradient
in a point in order to find a local minimum of a criterion. However, if the criterion
is a quadratic one with a positive defined Hessian, then the minimum found by the
criterion is the global minimum. The type of criterion can be written as:

J(x) = (m− x)T Q(m− x)
with Q a positive defined matrix

CG has the property of converging very fast to an approximate solution and to
converge to the exact solution in n iterations. This is done by, in each iteration,
exploring one of the conjugated direction from the criterion’s Hessian. Both CG
demonstration and implementation are well known; however if the reader wants to
know more, the explanation given in [7] is recommended. Even if the algorithm is
well known, some points that will be important for the rest of the work need to be
detailed.
The first one is that CG is a recursive algorithm that uses the estimation made in

the previous iteration in order to calculate the next one. Because of this characteristic,
CG needs a starting point that acts as the first estimation. In this work, the one that
will be used is the average of the four images that SIM creates.
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The other important point is that CG needs to calculate the forward problem several
times. As this work is in large scale data, there is the need to make a fast implementa-
tion of it. How to efficiently calculate the forward problem is explained in algorithm 2 1.

Algorithm 2: Forward Problem
1. Forward likelihood:

aux_signal =


diag(ΛO)
diag(ΛO)
diag(ΛO)
diag(ΛO)

⊗ F

(
diag(M)⊗


x̂i

x̂i

x̂i

x̂i


)

signal = sum_layers
(

diag(M)⊗ F †
(

diag(Λ†O)
diag(Λ†O)
diag(Λ†O)
diag(Λ†O)

⊗ aux_signal
))

2. Forward regularization:

reg = F †(diag(Λ†D)⊗ diag(ΛD)⊗ F (x̂i))

3. Output:
out = γn signal + γd reg
where:
-F is the matrix of the FFT operator
-x̂i is the estimation did in the previous iteration
-⊗ is the point wise product
-diag(.) creates a vector with the diagonal elements of a matrix
-sum_layers is the sum of the each of the four correspondent pixels
-ΛO is the diagonalization in the Fourier domain of the optical transfer function O
-ΛD is the diagonalization in the Fourier domain of the regularization operator D

The last important point is the preconditioner. As it is described in [5] the precondi-
tioner has as goal to approximate the Hessian of the forward problem. By doing so, the
convergence towards a good approximate solution is even faster than the traditional
CG. The preconditioner used in this work is the approximation of the Hessian by the
circular matrices. Since those matrices are easily diagonalizable, their inversion is easy.
The preconditioner is described in Algorithm 3 2.

1This algorithm describes the implementation using the Laplacian Operator, the Gradient Operator
has a similar implementation

2This algorithm describes the implementation using the Laplacian Operator, the Gradient Operator
has a similar implementation
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Algorithm 3: Preconditioner

x̄ = F †
(
γn|ΛO|2+γd|ΛD|2

)−1
F x

2.2.2 Laplacian regularization
In the Laplacian regularization case, the criterion that needs to be minimized is defined
by:

J(x) = (y −Hx)Tγn(y −Hx) + xT DTγdDx

Now that all the tools were presented, it is possible to apply the PM estimator to
the SIM problem. By methodically testing several values of γd these are the optimal
parameters found and norm of the error associated to them:

‖x− x̂‖ γn γd

2.1719× 103 0.1 0.0248

The restored image obtained using those parameters can be seen in Figure 2.1.
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Figure 2.1: Restored image using Posterior Maximum Estimator
with Gaussian priors and Laplacian regularization

2.2.3 Gradient regularization
The criterion that needs to be minimized for the Gradient regularization is:

J(x) = (y −Hx)Tγn(y −Hx) + xT DT
l γlD

T
l x + xT DT

c γcD
T
c x

Again by methodically testing several possibilities of hyper-parameters it is possible
to find those that minimize the norm of the error. Those are shown below.
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‖x− x̂‖ γn γl γc

2.1819× 103 0.1 0.0034 0.0084

The restored image obtained using those parameters can be seen in Figure 2.1.
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Figure 2.2: Restored image using Posterior Maximum estimator
with Gaussian priors and Gradient regularization

As it can be seen, both regularization operators create good results. The main
difference is that using the Laplacian operator gives the impression of small crosses
distributed all over the image (those are specially visible in the sky), which is not the
case in the Gradient regularization. Another difference is that corners are better in
the gradient regularization, this can specially be seen in the cameraman’s elbow.
By using the Conjugate Gradient it was possible to minimize the criterion J(x).

The values of hyper-parameters that obtain the minimum norm of error can therefore
be used to compare with the results given by the Posterior Expectation estimator.
However, before being able to do so, it is needed to be able to efficiently sample from
high-dimensional Gaussian distributions. In next section is presented the algorithm
that enables to do so and the improvements that were made to it.

2.3 Rejection Perturbation Optimization Algorithm

2.3.1 Perturbation Optimization Algorithm (PO)

PO was introduced in [4] and is an algorithm that efficiently samples from a specific
type of high-dimensional Gaussian distribution. Suppose a Gaussian distribution from
which one needs to be sample from and that can be written as:

g(x) ∝ exp
(
− 1

2

K∑
k=1

(mk −Mkx)T R−1
k (mk −Mkx)

)
(2.2)
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A sample from g(x) can be obtained with the following Algorithm:

Algorithm 4: Perturbation Optimization

1. Step P (Perturbation): Generate k = 1...K independent vector

ηk ∼ N(mk,Rk)

2. Step O (Optimization): Compute x̂i as the minimizer of:

J(x) =
K∑

k=1
(ηk −Mkx)T R−1

k (ηk −Mkx)

x̂i is a sample from 2.2. The algorithm’s demonstration is simple and can be looked
in the original paper [4] where it is well explained.

In order for the Step P to be efficient, the sample from ηk needs to be fast and easy
to do. This is the case if the Rk are for instance, diagonal, circular, or a mix of both.

The Step O needs an optimization to be performed. The natural choice is to use
the Conjugate Gradient (CG) and explore every direction. However, being a high-
dimensional problem, exploring all the directions would make the algorithm inefficient.
The natural choice would be to only approximate the minimum by truncating the
iterations. The problem with this approach is that there is no guarantee that the
approximate minimum is a sample from g(x). It is to solve this issue that the next
algorithm was introduced.

2.3.2 PO improved: the Rejection Perturbation Optimization Algorithm
(RJPO)

RJPO was introduced in [1]. As it was previously said, RJPO is way to certify that the
truncated minimum obtained from the Step O is statistically guaranteed to be a sample
from g(x). The main idea of the paper is to introduce an acceptance-rejection step in
order to guarantee it. The following algorithm is a modified version of the original
RJPO algorithm which aims to reduce the number of iteration of the Optimization
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step:
Algorithm 5: Rejection Perturbation Optimization

1. Step P (Perturbation): The same as PO

2. Step O (Optimization): Compute x̂i as the minimizer of J(x)
a) Start a Conjugate Gradient initialized with −x̂i−1 i.e., the opposite of the
previous sample
b) while α ≤ αmin do

i) Calculate x̂
(j)
i the iteration’s minimizer

ii) Calculate

α = min(1, exp(−∇J(x̂(j)
i )T (x̂(j)

i − x̂i−1)))

c) Accept the sample x̂
(j)
i with probability α

where:
- αmin is the minimum probability to test the sample, for instance αmin = 0.9
- ∇J(x̂(j)

i ) is J(·)’s Gradient calculated in x̂
(j)
i

This sample is statistically guaranteed to be a sample from g(x). The need of
initializing CG in Step O with the opposite value of the previous sample is that, as it is
proved in [1], the starting point and the final point need to be statistically independent
and that the known way to achieve it is to use the opposite of the previous sample.
The step of testing for every iteration if the sample is good enough to go through

the acceptance rejection step drastically reduces the number of iterations to have a
sample of g(x). This is positive since it reduces the calculation time of the sampling.
However, this gain is not that substantial because of the need of initializing the RJPO’s
Conjugate Gradient with the opposite of the previous sample. In order to partially
reduce this problem, it was implemented an RJPO using preconditioner.

2.3.3 A faster RJPO using a preconditioner

The possibility of using a preconditioner is mentioned in [1], the original paper that
presents RJPO. However, there is no comparison on how more efficient is RJPO to
PO neither on how using a preconditioner boosts up the speed of PO. In order to
better understand RJPO behavior, both algorithm were applied to the SIM problem3.
The preconditioner that was used is the same as described in Algorithm 3.

The algorithm was run 100 times. In Tables 2.1 and 2.2 are some of results of this
comparison.
The use of PO initialized with −x̂i−1 has as goal to compare how faster RJPO is

then PO with the same initialization. As it can be seen, there is no doubt that RJPO
3The detailed explanation on how using RJPO to sample the Gaussian related to SIM is explained
in section 2.4. This part aims only to compare the performances.
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Table 2.1: Comparison of the time spent in each case (in seconds)

PO with x̂i−1 PO with −x̂i−1 RJPO

normal 874 1100 687
preconditioned 772 1080 646

Table 2.2: Comparison of the average number of iterations in each case

PO with x̂i−1 PO with −x̂i−1 RJPO

normal 67.9 81.9 51.8
preconditioned 52.5 74.7 45.2

is faster, both in time and in number of iterations, than PO, with the advantage that
the x̂i is guaranteed to be a sample from g(x).
The use of the preconditioner is less simple to analyze. It speeds up PO with the

correct initialization in about 12% both in time and in number of iterations. However,
in PO with a wrong initialization it has almost no effect. In RJPO the preconditioner
speeds up the algorithm in about 6% in time and in about 10% in number o iterations.
This difference between percentage of gain in time and in number of iterations is due
to the fact that the operation of preconditioning itself takes some time, which reduces
the gain. Nevertheless, the speed up brought by the preconditioner is important and
its use will be maintain for the rest of the work.

Now, equipped with RJPO it is possible to efficiently sample from high-dimensional
Gaussians and therefore to use the Posterior Expectation estimator and to apply it
into the SIM problem that is being treated.

2.4 Supervised Posterior Expectation

The several samples x̂i from the distribution p(x|y, γn, γl, γc) that need to be taken
in order to apply PE are drawn using RJPO. As this is the supervised approach, the
values of the hyper-parameters are set using the optimal ones determined in section
2.2. Here again will be tested both regularization operators

2.4.1 Laplacian Regularization

In the Laplacian regularization, the distribution that needs to be sampled is defined
by:

p(x|y, γn, γl, γc) ∝ γM/2
n γ

N/2
d exp

(
−1

2
(
(y −Hx)Tγn(y −Hx) + xT DTγdDx

))
(2.3)
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Putting it as in 2.2:

g(x) ∝ exp
(
− 1

2

K∑
k=1

(mk −Mkx)T R−1
k (mk −Mkx)

)
K = 2

m1 = y; M1 = H; Rk = (γnI)−1

m2 = 0; M2 = D; Rk = (γdI)−1

The PE was taken with 2000 samples. The result can be seen in figure 2.3. As
it can be seen, the resultant estimation is really similar to the one obtained in the
supervised approach. The norm of the error is of 2.1739× 103 which is basically the
same of the supervised case. In Figure 2.4 can be seen that the estimated standard
deviation is small and regular all over the image. This regularity comes from the
optical transfer function that forces some points to be really similar as for others to be
more different but in a organized pattern. The Figure shows that RJPO can obtain
good samples with not a lot of variation among them.
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Figure 2.3: Restored image using
the supervised Posterior Expectation
estimator with Gaussian priors and

Laplacian regularization
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Figure 2.4: Standard deviation when using
the supervised Posterior Expectation
estimator with Gaussian priors and

Laplacian regularization

2.4.2 Gradient Regularization
In the Gradient regularization, the distribution that needs to be sampled is defined
by:

p(x|y, γn, γl, γc) ∝ γM/2
n det

(
γlD

T
l Dl + γcD

T
c Dc

)1/2

exp
(
−1

2
(
(y −Hx)Tγn(y −Hx) + xT DT

l γlDlx + xT DT
c γcDcx

))
(2.4)
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Putting it as in 2.2:

g(x) ∝ exp
(
− 1

2

K∑
k=1

(mk −Mkx)T R−1
k (mk −Mkx)

)
K = 3

m1 = y; M1 = H; Rk = (γnI)−1

m2 = 0; M2 = Dl; Rk = (γlI)−1

m3 = 0; M2 = Dc; Rk = (γcI)−1

The estimation was made again with 2000 samples. As it can be seen in Figure 2.5,
the restored image is really similar to the one obtained with the supervised approach.
The norm of the error is 2.1831× 103 which is really close to the supervised case. In
the Figure 2.6 it can be seen that the standard deviation when using the Gradient
regularization is very similar to the one using the Laplacian regularization. It is
interesting to note though that the regularity is less important and less rigid that in
the Figure 2.4. This is a direct consequence of the use of an operator separable for
the lines and the colons.
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Figure 2.5: Restored image using
the supervised Posterior Expectation
estimator with Gaussian priors and

Gradient regularization
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Figure 2.6: Standard deviation when using
the supervised Posterior Expectation
estimator with Gaussian priors and

Gradient regularization

With those results, it is now possible to see how perform the unsupervised approach.
Remember that the unsupervised approach is the desired one as the original image is
not available so calculating the norm of the error is not possible.

2.5 Unsupervised Posterior Expectation
The difference of the supervised and the unsupervised approach is the sampling of the
hyper-parameters. It can be done using the Gibbs sampler described in the Algorithm
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1. The sample of the Gaussians is done using RJPO as described in the previous
section.

2.5.1 Laplacian Regularization

The Laplacian case is exactly as it was described in the Algorithm 1. The distribution
used to sample from the hyper-parameters are

γn ∼G (M/2− 1; 2/((y −Hx)T (y −Hx)))
γd ∼G (N/2− 1; 2/((Dx)T (Dx)))

Where G is the gamma distribution.
The unsupervised PE estimator was used with 2000 samples. In Figure 2.7 it is

possible to see the resultant estimation. As it can be seen, the resultant image is
close to the one estimated in both the supervised case and in PM, with a norm of the
error of being 2.1739× 103. Figure 2.8 shows that even in the unsupervised PE the
Laplacian regularization using RJPO produces samples close to each other i.e., with a
small standard deviation. This is obtained because the hyper-parameters converge
fast enough and therefore the samples are Gaussians distributions.
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Figure 2.7: Restored image using
the unsupervised Posterior Expectation
estimator with Gaussian priors and

Laplacian regularization
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Figure 2.8: Standard deviation when using
the unsupervised Posterior Expectation
estimator with Gaussian priors and

Laplacian regularization

As it can be seen in Figure 2.9 both hyper-parameters converge towards similar
values of those determined in section 2.1. In Table 2.3 are compared the values
determined by the PM estimator and the mean value and standard deviation of the
hyper-parameters by the unsupervised case. As it can be seen, both mean are really
close to the values determined for the PM estimator. Furthermore, the standard
deviation is small in both cases. The property of convergence was tested for different
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initialization and in all of them, convergence was achieved. However, the convergence
to stable hyper-parameters can be slower for a bad initialization.
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Figure 2.9: Hyper-parameters chain of values
(a) γn (b) γd

PM PE
value mean std

γn 0.1 0.0998 0.0003
γd 0.0248 0.0270 0.0003

Table 2.3: Comparison of the values
of hyper-parameters determined by

PM and PE in the Laplacian Regularization

2.5.2 Gradient Regularization
The Gradient Regularization case has some differences for the sampling of the hyper-
parameters. The noise’s precision γn is still the same as in the previous case. However,
the posterior distribution of the hyper-parameters γl and γc regularization operator is:

p(γl, γc | x,y, γn) ∝ γ−1
l γ−1

c det
(
γlD

T
l Dl + γcD

T
c Dc

)1/2

exp
(
−1

2
(
xT DT

l γlDlx + xT DT
c γcDcx

))
for (γl, γc) > (0, 0); 0 otherwise

The problem with this probability density function is that there is no known way to
directly sample from it. Therefore, two steps need to be taken. The first one is to take
the conditional distribution of each which leads to the following probability density
functions:

p(γl|x,y, γn, γc) ∝ γ−1
l det

(
γlΛ†DlΛDl + γcΛ†DcΛDc

)1/2
exp

(
−1

2xT DT
l γlDlx

)
∝ γ−1

l

( n∏
i=1

(γl|λDl;i|2+γc|λDc;i|2)
)1/2

exp
(
−1

2xT DT
l γlDlx

)
for γl > 0; 0 otherwise

p(γc|x,y, γn, γl) ∝ γ−1
c det

(
γlΛ†DlΛDl + γcΛ†DcΛDc

)1/2
exp

(
−1

2xT DT
c γcDcx

)
∝ γ−1

c

( n∏
i=1

(γl|λDl;i|2+γc|λDc;i|2)
)1/2

exp
(
−1

2xT DT
c γcDcx

)
for γc > 0; 0 otherwise

where λdl;i is ith element of the diagonalized (in the Fourier domain) regularization
operator (and equivalently for λcl;i) .
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There is also no way to directly sample from those conditional distributions. However,
the second step is that, as they are single-dimensional, they can be sampled using a
Metropolis-Hastings algorithm. If the reader is not familiar with Metropolis-Hastings,
they can check in [8] for a very good and simple explanation. The instrumental
distribution used was a Gaussian distribution with mean = 0 and variance = 0.001.
The acceptance rate was calibrated to be around 66%

With all of this set, a first PE estimation was made using 2000 samples. The
unsupervised PE estimator clearly presented some instability. As it can be seen in
Figure 2.10 the hyper-parameters do not converge to any value and seem unstable.
In Table 2.4 it can be seen that the mean of γn is close to the value determined by
the PM estimator in section 2.2 and that its standard deviation is small. However
both γl and γc have means very different from those determined by the PM estimator
and both have very high standard deviation. The reason why this happens is not
completely clear and is better discussed in the next section.
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Figure 2.10: Hyper-parameters chain of values
(a) γn (b) γl (c) γc

PM PE
value mean std

γn 0.1 0.0922 0.0050
γl 0.0034 0.0127 0.0097
γc 0.0084 0.0188 0.0116

Table 2.4: Comparison of the values
of hyper-parameters determined by

PM and PE in the Gradient Regularization

Furthermore, as it can be seen in Figure 2.11, the standard deviation of the image
is extremely high, specially around the edges. This means that the algorithm has
troubles to sample correctly from those parts of the image. This is an important
indicator that the non convergence of the hyper parameters has an actual influence on
the samples that are produced.

However, it can be seen in Figure 2.12, it seems that for the first 200 iterations, the
values for γl and γc were close to those determined in section 2.1. This is confirmed
by the results presented in Table 2.5: the mean value of the hyper-parameters are all
closer to those determined by PM in section 2.2. This partial convergence is related
to the initialization as it needs the hyper-parameters to be initialized with values not
too different from those determined by the PM, however, if they are close enough, this
property is always observed. The reason why this may be the case is discussed in the
next section.
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Figure 2.11: Standard deviation using the unsupervised Posterior Expectation estimator
with Gaussian priors and Gradient regularization and 200 samples
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Figure 2.12: Hyper-parameters chain of values
for 200 samples

(a) γn (b) γl (c) γc

PM PE
value mean std

γn 0.1 0.1002 0.0017
γl 0.0034 0.0019 0.0007
γc 0.0084 0.0097 0.0054

Table 2.5: Comparison of the values
of hyper-parameters determined by

PM and PE in the Gradient Regularization
for 200 samples

It is therefore possible to use this property of initial convergence of the hyper-
parameters to do a second unsupervised PE estimation using only 200 samples. The
result can be seen in Figure 2.13. The estimated image is actually a good one with the
norm of the error being 2.2248× 103. This partially contradicts the theory that more
samples create a better image, but it is the consequence of having hyper-parameters
that are closer to the optimal hyper-parameters determined by the supervised approach.
Of course normally those values are not known, and therefore this approach could not
be directly done. In order to solve this issue an approach could be to use a supervised
and not very precise PM in order to obtain hyper-parameters’ values that can be used
as initialization. As it can be seen in Figure 2.14, reducing the number of samples
also has as consequence to create a smaller standard deviation. The pattern of the
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optical transfer function starts to reappear which is a sign that the samples are closer
to each other.
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Figure 2.13: Restored image using
the unsupervised Posterior Expectation

estimator with Gaussian priors,
Gradient regularization and 200 samples
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Figure 2.14: Standard deviation when using
the unsupervised Posterior Expectation

estimator with Gaussian priors,
Gradient regularization and 200 samples

2.6 Results’s Analyses

The conclusions presented in here, even if they are illustrated with the results obtained
in the chapter, are quite general and can also be observed with other images as for
different amount of noise.
The first and most important conclusion is that the results obtained using PM,

supervised PE and unsupervised PE are very similar as it can be seen by the comparison
of the norm of the error in Table 2.6. Even if this was expected, quantifying this result
demonstrates the efficiency of the unsupervised Posterior Expectation as it is able to
determine estimations as good as those obtained by manually testing the results and
then comparing. It also shows that the method can be trusted to give good results
when used with Laplacian regularization. It can also be trusted for the Gradient
regularization if it is initialized with some caution and not to many samples are taken.

Table 2.6: Comparison of norm of the error obtained using the different methods
and different regularization operators

‖x− x̂‖ PM PE
supervised supervised unsupervised

Laplacian 2.1719× 103 2.1739× 103 2.1739× 103

Gradient 2.1819× 103 2.1831× 103 2.2248× 103
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A second and also important conclusion is that using the Gradient regularization
gives better results. Even if this does not appear numerically when calculating the
norm of the error, it is visually noticeable as the resultant estimation seems as if it
is more focused. It also does not produce the effect of small crosses that are visible
when using the Laplacian regularization. This conclusion is the motivation for looking
for potentials where the gradient regularization can be used as it will be done in next
chapter.
A third conclusion is on the standard deviations. As it was seen in the standard

deviations figures shown in the chapter, the standard deviation reveals a lot about
the quality of the estimation. At least for the Gaussian case, if the estimation is good
it means that the standard deviation will be small and that the image seen should
be close to the pattern of the optical transfer function. However, if the estimation of
the hyper parameters is not stable, this influences the standard deviation that will
increase specially around the points were the model has more difficulty to sample, in
this case, the edges.

The final conclusion, which is for now more of an empirical conclusion, is that using
too many samples on the unsupervised case when using the Gradient Regularization
produces bad results as the hyper-parameters start to diverge after a certain number
of samples. It is not completely clear why this happens. The hypothesis that is made
is the following. As it was already stated, the posterior distribution of γc and γl is:

p(γl, γc|x,y, γn) ∝

γ−1
l γ−1

c det
(
γlD

T
l Dl + γcD

T
c Dc

)1/2
exp

(
−1

2
(
xT DT

l γlDlx + xT DT
c γcDcx

))
As it can be seen, the main term in the distribution is γlD

T
l Dl +γcD

T
c Dc. This means

that the distribution is more influenced by the sum of the hyper-parameters than by
the hyper-parameters themselves. Even if the addition only appears in a part of the
conditional distribution, it might be the cause of the instability. What is probably
happening is an indetermination of the joint distribution: when a sample of one of
the hyper-parameters randomly goes to a less likely place, the sample of the next one
will compensate it by also changing. Because of this, when taking few samples and
with a good initialization there is less probability that one of the hyper-parameters
might go to a less likely region and drives the other one there. This hypothesis is
reinforced by the data on the histograms presented in Figure 2.15 4 and in Table 2.7.
The hyper-parameter γn has as strong correlation to γc + γl and a smaller one to each
one of them separately.

Table 2.7: Correlation between the hyper-parameters

γl × γn γc × γn (γc + γl)× γn

−0.5825 −0.2502 −0.9065

4The angles of the histogram were deliberately chosen different for a better view
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Figure 2.15: Histogram of different relation between the hyper-parameters

It might be that different priors on γc and γl could solve this issue, nevertheless
some other priors were tested without success. Therefore, for the rest of the work the
strategy of maintaining a small number of samples and a good initialization will be
used when using the Gradient Regularization.

With those results, a first step was achieved towards the image restoration. However,
it was using only Gaussian distributions. In the next chapter is presented a way to
efficiently sample from other types of distributions
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3 Models Based on Mixture of Gaussian

The results obtained in the previous chapter show the quality of the restoration that can
be achieved using Gaussian models. However, the framework was a rather restrictive
one as it can only be applied to Gaussian priors and Gaussian noise. Nevertheless,
many situations could possibly be better modeled with other types of distributions.
In addition to that,typical one-dimensional distributions may have several multi-
dimensional generalization, as it is the case of the exponential distribution [9], and
those generalization are not necessarily easy to sample from.

In order to solve this issue, the approach that is taken is based on Mixtures of
Gaussians 1. This approach allows one to construct some distributions, called the
target distribution, in terms of two separate distribution: a multivariate Gaussian
distribution that contains the correlation information and an auxiliary distribution
which samples are independent and therefore easy to sample from.

Two ways of creating mixture of Gaussians are presented, the Location Mixture of
Gaussian (LMG) that acts on the Gaussian’s mean and the Scale Mixture of Gaussian
(SMG) that acts on the Gaussian’s precision matrix.

The main difficulty that is addressed is that the auxiliary variables used in the
mixture need to have a separable posterior distribution. In both cases this is overcome
by a correct construction of the prior distribution of the auxiliary variable that leads
to a separable partition function of the mixture model. Furthermore, by explicitly
calculating the partition function, it is possible to construct a framework where hyper-
parameters can be sampled and therefore this mixture models can be used in an
unsupervised approach.

In the first two sections of this chapter the formal construction of LMG and
SMG is presented. Both sections are divided in three distinct parts to ease up the
understanding: First part is the formal construction of the mixture, second part is
the calculation of the partition function and showing that it is separable and third
part is how to determine the auxiliary distribution that creates the target one.

In the last section of the chapter it is explained how to efficiently sample from
those distributions and how this formality can be applied in an inverse problem using
unsupervised Posterior Estimation.

1Mixture models are also known in the continuous case as Compound Distributions
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3.1 Location Mixture of Gaussian (LMG)

3.1.1 Constructing a Location Mixture of Gaussian

The Location Mixture of Gaussian is based on assigning random variables to a
Gaussian’s mean. The formality that is presented in here is a based in the one
presented in [2]. The present work brings two main contributions. The first one is that
the original paper only addresses cases where the precision matrices are diagonalizable
in the Fourier domain, this work shows that the formality can be extended using
RJPO. The second one is that it is claimed in the original paper that the regularization
operation needs to have the same number of cliques that the images has of pixels.
This would be equivalent to be restricted to a single regularization operator could be
used. The contribution is to prove that several regularization operators can be used
and that if those are well constructed, sampling hyper-parameters is possible.
Let us consider a target distributions p(x). Suppose it is defined by:

p(x) = C−1
p

K∏
k=1

pk(x) (3.1)

Where pk(·) are probability density functions. In here it is important to note that it is
not stated that the pk(·) are independent. What is being said is that the probability
density function is partially separable in a product of probability density functions
and a common normalizer Cp. Each one of this distributions is associated with one
regularization operator.
Now suppose that each pk(x) can be written as:

pk(x) ∝
∫
Rn
πk(x, bk)dbk (3.2)

where πk(x, bk) is a multivariate probability density function of dimension n; this is
the same as considering that pk(x) is the marginalization of πk(x, bk). Therefore, p(x)
can be rewritten as:

p(x) ∝
K∏

k=1

∫
Rn
πk(x, bk)dbk (3.3)

Since πk(x, bk) is a probability density function, Fubini’s theorem can be applied:

p(x) ∝
∫
RnK

(
K∏

k=1
πk(x, bk)

)
db1db2...dbK (3.4)

Consider now that πk(x, bk) can be written as:

πk(x, bk) ∝ gk(x|bk)Fk(bk)dbk (3.5)

where gk(x) is multivariate Gaussian distribution of dimension n and Fk(bk) is an
auxiliary distribution of dimension n. In here it is important to clearly state that each
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element bk;j of bk is independent of each other, and therefore:

Fk(bk) =
n∏

j=1
fk(bk;j) (3.6)

this will not be needed for the rest of the deduction, however it will be essential for
the sampling and making it clear is fundamental.
Now reorganizing p(x)

p(x) ∝
∫
RnK

(
K∏

k=1
gk(x|bk)Fk(bk)

)
db1db2...dbK (3.7)

p(x) ∝
∫
RnK

(
K∏

k=1
gk(x|bk)

)(
K∏

k=1
Fk(bk)

)
db1db2...dbK (3.8)

For the next steps the distributions need to be written detailed. By choosing gk(x|bk)
in the form:

gk(x|bk) ∝ exp
(
−1

2
(
bk −Dkx)Tγk(bk −Dkx

))
(3.9)

And by defining

G(x|b) := exp
(
− 1

2

K∑
k=1

(bk −Mkx)Tγk(bk −Mkx)
)

(3.10)

Then equation 3.8 can be written as:

p(x) = C−1
p

∫
RnK

G(x|b)
(

K∏
k=1

Fk(bk)
)
db1db2...dbK (3.11)

where Cp is the normalizing coefficient.
The Equation 3.11 is an important result. As it can be seen, p(x) has two distinct

parts. The first one is a Gaussian distribution that contains all the information on the
covariance. The second one is the product of separable density functions. Furthermore,
the number K being the amount of regularization operator, it is clear that the
constructed LMG is extendable to more than one regularization operator. In order to
know if each bk,j has a posterior distribution which is conditionally independent, it is
needed to show that the partition function is separable.

3.1.2 Calculating the partition function

The reason why it is needed to explicitly calculate the partition function is that both
hyper-parameters and the auxiliary variables may be in it and they will be needed
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when sampling their posterior distribution. The partition function can be explicitly
calculated by:

Cp =
∫
Rn
p(x)dx (3.12)

Cp =
∫
Rn

∫
RnK

G(x|b)
(

K∏
k=1

Fk(bk)
)
db1db2...dbKdx (3.13)

Cp =
∫
RnK

(∫
Rn
G(x|b)dx

)(
K∏

k=1
Fk(bk)

)
db1db2...dbK (3.14)

Cp =
∫
RnK

CG

(
K∏

k=1
Fk(bk)

)
db1db2...dbK (3.15)

with:

CG := det
( K∑

k=1
DT

k γkDk

)−1/2
(2π)n/2 (3.16)

Since CG does not depend on bk:

Cp = CG

∫
RnK

(
K∏

k=1
Fk(bk)

)
db1db2...dbK (3.17)

Cp = CG

K∏
k=1

∫
Rn
Fk(bk)dbk (3.18)

Thus:
Cp = CG (3.19)

The partition function therefore depends only on the Gaussian’s partition function
which itself only depends on its precision matrix. The partition function is independent
of the location of the Gaussian. This result means that each bk,j can be sampled
independently of each other. Therefore any set of distributions hk can be chosen and
will not interfere on the sampling of the hyper-parameters. However, the problem is
not completely solved as calculating the determinant in CG would itself be a problem
when working with high-dimensional Gaussians. There are therefore three cases that
simplify this calculation:

1. If K = 1:
C−1

G = γN/2 det
(
DT D

)1/2
(3.20)

In this case, the determinant does not need to be explicitly calculated as it enters
the proportionality constant and therefore has no influence on the sampling of γ.

2. If all γk are the same, i.e., γ1 = γ2... = γK = γ:

C−1
G = γN/2 det

(
K∑

k=1
DT

k Dk

)1/2

(3.21)
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Again in this case, the determinant does not need to be explicitly calculated in
order to sample γ.

3. If the operators Dk are diagonalizable in the same base i.e., they commute:

C−1
G =

(
n∏

i=1

( K∑
k=1

γk|λk;i|2
))1/2

(3.22)

where λk;i is the ith diagonal element of the diagonalized matrix Dk. In this
case, the determinant is just easier to calculate, however the sampling of the
hyper-parameters is not as simple as in the two previous cases as it will be seen
in section 3.3. Another point is that the diagonalization must be a known and
easy one, which is not always the case. The two basic cases are evidently if the
matrices Dk are already diagonal or if they are circular.

This concludes the construction of a separable Location Mixture of Gaussian. As it
will be seen in the last section, because the distribution is composed of the distinct
parts, it can be sampled easily associating RJPO and independent samples of the
auxiliary variables bk,j . Furthermore, the construction that was achieved is applicable
when having several regularization operator, which is an important contribution as in
the case treated in this work, sampling using line operators and colons operators was
shown to produce better results.

3.1.3 Determining the auxiliary distribution based on the target

Before finishing this section it is necessary to mention which kind of distributions can
be constructed using LMG. As this is not the main scope of this work and as non
existing work was found, only a main idea on how to find the auxiliary distribution
based on the target is given. By writing the equation 3.2

pk(x) ∝
∫
Rn
πk(x, bk)dbk

∝
∫
Rn

exp
(
−1

2(bk −Dkx)Tγk(bk −Dkx)
)
Fk(bk)dbk

It is clear that it is really similar to the convolution of the normal distribution and
Fk. This particular view can be useful if the modeled process is the addition of a
Gaussian random variable and another random variable. Another possible way of
finding distributions would be through the characteristic function as it is a powerful
tool to manage convolution operations.
This last topic closes the discussion on the Location Mixture of Gaussian. This

method clearly cannot build any distribution and therefore it is useful to think in
another type of mixture that would enable so. This is why another type of mixture is
introduced, the Scale Mixture of Gaussian which can build other distributions.
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3.2 Scale Mixture of Gaussian (SMG)

3.2.1 Constructing a Scale Mixture of Gaussian

Scale Mixture of Gaussian is based on the same idea as Location Mixture of Gaussian,
however, instead of assigning a random variable to the mean, the random variable
is assigned to the covariance matrix. The way this formulation is made is heavily
influenced by what is done in the previous section. Even if Scale Mixtures of Gaussians
are known for some time, to the knowledge of the author, what is presented in this
section is an original contribution.
The change of the mixing parameters brings intrinsic differences to the equations

that were developed in the previous section. One of those difference is that it was
not find a way of constructing a separable SMG with more than one regularization
operator. Details on the matter are given in section 5.2.4.
Let us consider a target distributions p(x). Suppose it is defined by:

p(x) ∝
∫
Rn
g(x|S)Q′(S)dS (3.23)

where g(x|S) is a multivariate Gaussian distribution of dimension n, Q′(S) is an
auxiliary measurable function of dimension n and S is a diagonal random matrix of
dimension n× n. In an analogous way of what is the case in LMG, each element sj of
S is independent and therefore:

Q′(S) =
n∏

j=1
q′(sj) (3.24)

As it will be seen later, q′(·) is the derivation of a probability density function q(·) and
this will ease up some calculations further in the calculations. However Q′(·) is not a
derivation itself and in this case " ′ " is just used as a reminder of the derivations.
Now explicitly writing g(x|S):

g(x|S) ∝ exp
(
−1

2xT DT S2Dx

)
(3.25)

and substituting it in 3.23

p(x) = C−1
p

∫
Rn

exp
(
−1

2xT DT S2Dx

)
Q′(S)dS (3.26)

As it was the case in LMG, p(x) is composed of two distinct parts. One is an Gaussian
distributions that can be sampled from using RJPO. The other part is a product of
independent random variables sj . As it was the case in LMG, in order to know if the
elements of S are conditionally independent it is needed to calculate the partition
function Cp.
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3.2.2 Calculating the partition function
Having obtained a construction of the probability function p(x) as a SMG, it is needed
to calculate its partition function. As it was the case in LMG, the partition function
needs to be separable in order for the sampling of S to be efficient.

Cp =
∫
Rn
p(x)dx (3.27)

Cp =
∫
Rn

∫
Rn

exp
(
−1

2xT DT S2Dx

)
Q′(S)dSdx (3.28)

Cp =
∫
Rn

(∫
Rn

exp
(
−1

2xT DT S2Dx

)
dx

)
Q′(S)dS (3.29)

Cp =
∫
Rn

(det
(
DT S2D

)1/2
(2π)−n/2)Q′(S)dS (3.30)

Cp = det(D)(2π)−n/2
∫
Rn

det(S2)1/2Q′(S)dS (3.31)

Cp = det(D)(2π)−n/2
∫
Rn

n∏
j=1

sj q
′(sj)ds1ds2...dsn (3.32)

Cp = det(D)(2π)−n/2
n∏

j=1

∫
R
sj q
′(sj)dsj (3.33)

The equation 3.33 is the essential contribution of this section. As it can be seen,
the partition function in the case of SMG does depend on the chosen distribution
q′(·). However, the way that the construction was made, the auxiliary variable sj only
appears associated to its own distribution. This mean that each sj can be dealt with
independently and, in special, can be sampled from independently.

With this result, it is possible to study how to determine the auxiliary distribution
that enables to sample using SMG.

3.2.3 Determining the auxiliary distribution based on the target
The last part, a way of determining how to construct a prior distribution is needed.
The approach that will be used in here is the one described in [10], one can also look
in [11] for another construction.
Since Q′(S) is separable and that the partition function also is, equation 3.23 can

be written as:

p(x) ∝
∫
Rn
g(x|S)Q′(S)dS ∝

n∏
j=1

∫
R
sj exp

(
−1

2s
2
j x̄

2
j

)
q′(sj)dsj (3.34)

where x̄j is the jth element of Dx The main idea used in [10] is to see p(x̄j) as a type
of Laplace transform of q′(sj). It is proven that, if(

− d

dx̄j

)k
p(x̄1/2

j ) ≥ 0 for x̄j > 0 (3.35)
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then a representation of p(·) as a Scale Mixture of Gaussians exists.
Furthermore, a simple way of finding q′(sj) is proposed in the original paper. It is

presented as Algorithm 6:
Algorithm 6: Finding SMG’s auxiliary function using Laplace transform

1. Find ξ(t) the inverse Laplace transform of p(x̄1/2
j )

2. Make the change of variable t = s2
j/2

3. Determine q′(sj) = ξ(s2
j/2)

4. Calculate the primitive function q(sj) =
∫
q′(sj)dsj

Therefore, by sampling sj determined by the distribution q(·), p(x̄j) will follow the
desired distribution.
This ends up the analyses on SMG. Next section will discuss on how to efficiently

sample from the constructed distributions of LMG and SMG.

3.3 Efficiently Sampling from the Constructed Distributions
This section summarizes all the major contributions done by this work. In here, it is
shown that the constructed distributions can not only be efficiently sampled but also
can be integrated in a unsupervised Bayesian framework.

3.3.1 Constructing a Posterior Distribution
In the previous section, a model of multi-dimensional Gaussian mixtures was con-
structed. However, it was not presented how the construction can be used to efficiently
sample from those distributions. This section has as goal to show how to do so and
how to apply it to high-dimensional inverse problems.
In order to illustrate both LMG and SMG at the same time, a hypothetical ex-

ample will be constructed. This example can then easily be extended to all possible
combinations that are desired. The likelihood is described by a SMG:

p(y|x) ∝
∫
Rm

det(S)1/2 exp
(
−1

2(y −Hx)T S2(y −Hx)
)
Q′(S)dS (3.36)

And the prior is described by an LMG with K=2

p(x|γlγc) ∝
∫
Rn×n

exp
(
−1

2
(
(bc −Dcx)Tγc(bc −Dcx) + (bl −Dlx)Tγl(bl −Dlx)

))
det

(
γcD

T
c Dc + γlD

T
l Dl

)1/2
Fc(bc)Fl(bl)dbcdbl

(3.37)

And for the hyper-parameters Jeffrey priors are used i.e.,

p(γ) = γ−1 (3.38)
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The posterior distribution is therefore:

p(x, γc, γl|y) ∝ p(y|x)p(x|γlγc)p(γc)p(γl) (3.39)

Substituting the terms:

p(x, γc, γl|y) ∝ γ−1
c γ−1

l det
(
γcD

T
c Dc + γlD

T
l Dl

)1/2

∫
Rm×n2

p(x|y, bl, bc,S, γl, γc) det(S)1/2Q′(S)Fc(bc)Fl(bl)dSdbcdbl

(3.40)

with:
p(x|y, bl, bc,S, γl, γc) ∝

exp
(
−1

2
(
(y −Hx)T S2(y −Hx) + (bc −Dcx)T γc(bc −Dcx) + (bl −Dlx)T γl(bl −Dlx)

))
(3.41)

Now that a posterior distribution has been created, it is possible to sample from it using a
Gibbs sampler.

3.3.2 Efficiently sampling
Since Gibbs sampler is a marginalization, the posterior distribution can be sampled easily
using the conditional distributions. Each one of the sampling can be achieved in different
ways as it is described in the following.

• p(x|y, bl, bc,S, γl, γc) detailed in 3.41 can be efficiently sampled using RJPO

• p(γc|y,x, bl, bc,S, γl) has three cases as it was presented in the first section of the
chapter. If Dc and Dl are both diagonalizable in the same base, then:

p(γc|y,x, bl,bc,S, γl) ∝

γ−1
c

n∏
i=1

(γc|λc;i|2+γl|λl;i|2)1/2 exp
(
−1

2(bc −Dcx)T γc(bc −Dcx)
)

which can be sampled using a Metropolis-Hastings algorithm.

• p(γc|y,x, bl, bc,S, γc) can be sampled in an analogous way

• p(bc|y,x, bl,S, γc, γl), as it was previously mentioned, each element bc;i from bc is
independent. Therefore, each bc;i has as distribution:

p(bc;i|y,x, bl,S, γc, γl) ∝ exp
(
−1

2γc(bc;i − x̄c;i)2
)
fc(bc;i)

where x̄c;i is the iit element of Dcx. The method to sample bc;i will depend on fc(·),
the worst possible scenario would be sampling using Metropolis-Hastings. However,
the important thing is that, since each x̄c;i is independent, the sampling can be done
efficiently with no regard to the distribution’s dimension.

• p(bl|y,x, bc,S, γc, γl), can be sampled in an analogous way
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• p(S|y,x, bc, bl, γc, γl) in here, also each element si from S is independent. Therefore,
each si has as distribution:

p(si|y,x, bc, bl, γc, γl) ∝ exp
(
−1

2s
2
i x̄

2
H;i

)
q′(si)

where x̄H;i is the iit element of (y −Hx). Again in here, the method to sample si

will depend on q′(·), the worst possible scenario would be sampling using Metropolis-
Hastings. And also in this case, the important thing is because of the independence,
the sampling can be done efficiently with no regard to the distribution’s dimension.

• finally, q′(·), fc(·) and fl(·) may have hyper-parameters on their own that would need
to be sampled from.

How to efficiently sample from the constructed distribution concludes this chapter. The
previous example is a good illustration of the LMG and SMG as it allows one to have a broad
overview of what was done in this chapter. The construction of LMG and SMG that were
done are major contributions of this work as they increases the number of distributions that
can be efficiently sampled in high-dimension problems.

In the next chapter is presented an application of LMG to construct a L2L1 potential and
it is shown how the contributions in the work are important for its construction.
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4 L2L1 Prior
The biggest problem of using Gaussian prior as regularization is that it is known for not being
edge preserving. This can be a problem as most of the details in an image appear because of
the edges. Therefore, the construction of a edge preserving potential is a well known research
topic.

In this chapter are presented the results using L2L1 criteria, which have a quadratic behavior
around the origin and a linear behavior at large values, allowing edge preserving [2]. In section
4.1 will be used the Huber Potential as an L2L1 potential. In the sections 4.2 and 4.3 will
be used the potential developed in [2] that approximates a L2L1 potential. This potential is
constructed using a LMG approach as it was described in section 3.1.

4.1 Posterior Maximum
4.1.1 Half-Quadratic Criterion
The criterion that was presented in section 2.1 was a quadratic criterion as it is based on two
distinct quadratic parts

J(x) = (y −Hx)T γn(y −Hx) + xT DT γdDx (4.1)

which can be rewritten as:

J(x) = J0(x) +
n∑

i=1
γdx̄

2
i (4.2)

where x̄2
i is th ith element of Dx.

The L2L1 criterion that needs to be minimized is called a Half-Quadratic, as it is based on
the same quadratic part J0(x) and in a non-quadratic one. The criterion can be written as:

J(x) = J0(x) +
n∑

i=1
φ(x̄i) (4.3)

There are several choices of function φ(·); the one that is chosen is the Huber potential:

φ(x̄i) = κ

{
x̄2

i if x̄i ≤ τ ;
2τ |x̄i|−τ2 if x̄i ≥ τ .

(4.4)

Since the new criterion is not a quadratic one, it is not possible to use Conjugate Gradient in
it. Therefore, another type of optimization tool is needed. The one chosen is the optimization
of Geman Yang augmented criterion. Its implementation is explained in the next subsection.

4.1.2 Geman and Yang (GY) form of Augmented Criterion and LEGEND
algorithm

The Geman and Yang augmented criterion is a way of transforming some half-quadratic
criterion into two distinct parts. The LEGEND algorithm explores the augmented criterion in
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an efficient way to minimize it. All the demonstration and condition for the criterion to exist
and the LEGEND algorithm to work are detailed in [12]. All those demonstrations show that
they can be applied to the Huber potential. The algorithm is detailed below:

Algorithm 7: LEGEND
while number of iterations not achieved do

1. optimize using Conjugate Gradient the criterion

JQ(x) = (y −Hx)T γn(y −Hx) + (b−Dx)Tκ(b−Dx)

2. update the value of b:

bi = x̄i − 0.5dφ(x)
dx

∣∣∣∣
x=x̄i

The LEGEND algorithm makes it possible to test the parameters γn, κ and τ that minimize
the norm of the error |x− x̂|. However, this could only be done to the Laplacian regularization,
for the Gradient regularization, the increased number of hyper-parameters (γn, γc, τc, γl and
τl) would make it really slow to test enough different values to have a good precision on the
parameters.

4.1.3 Laplacian Regularization

The criterion that needs to be minimize is exactly the one stated in the previous paragraph
using as matrix D the Laplacian operator. It is therefore possible to test several combination
of the hyper-parameters in order to find those that minimize the norm of the error. The
results are presented bellow.

‖x− x̂‖ γn κ τ
2.0008× 103 0.1 0.2154 1.3705

In Figure 4.1 it is possible to observe the restored image using those parameters. As it
can be seen, the restored image has a better quality and the borders, specially around the
cameraman’s coat, are better defined. The general impression is that the details are more
clear. This is not that much reflected in the norm of the error since the improvement in the
quality is specially around the borders and those do not compose most of the image. In Figure
4.2 is shown the auxiliary variable b that is used as mean in the quadratic criterion. As it
can be seen, the auxiliary variable detects the borders with an impressive precision. This
happens because the auxiliary variable detects the places where the quadratic part is not able
to regularize the most.
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Figure 4.1: Restored image using
the LEGEND Algorithm
with Huber potential and
Laplacian regularization
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Figure 4.2: Auxiliary variable b using
the LEGEND Algorithm
with Huber potential and
Laplacian regularization

In Figure 4.3 a specific line of the image was selected and compared with the original image,
and the absolute difference between the original image and the estimation using the L2l1 norm
and the absolute difference between the original image and the estimation using the L2L1
norm. As it can be seen, the estimation using the L2L1 norm is better as it can has less
differences with the original image, specially in points of fast variation. This confirms what is
known for the L2L1 potential which is that it has a better capacity to follow the edges.
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Figure 4.3: Comparison using the line 100
(a) Original image (b) |x− x̂l2l1| (c) |x− x̂l2|

4.2 Supervised Posterior Expectation
4.2.1 Log-erf potential and distribution
In [2] is constructed a L2L1 potential similar to the Huber potential, called the log-erf potential.
The potential is well studied in the original paper. As it will be seen, it can be sampled from
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and the contributions made in 3.1 allow to use the potential when two regularization operator
are used.
The log-erf potential is defined by:

φ(x̄i) = −2 log (χ(+x̄i) + χ(−x̄i)) (4.5)

with: χ(x̄i) = exp
(
γbx̄i

2

)
erfc

(
( γb

2γd
+ x̄i)

√
γd/2

)
where γb is a hyper-parameter of the distribution and x̄i is the ith element of Dx. The
associated distribution is:

p(x) ∝ exp
(
− 1

2

n∑
i=1

φ(x̄i)
)

(4.6)

Which can be obtained through the following Gaussian mixture:

p(x) ∝
∫
Rn

γ
n/2
d γn

b exp
(
−1

2(b−Dx)T γd(b−Dx)
)
F (b)db (4.7)

with:

F (b) =
n∏

i=1
f(bi)

f(bi) = exp
(
−γb

2 |bi|
)

Finally, it is also deduced a relation between the parameters of Huber potential and the log-erf,
which is:

τ = γb

φ′′(0)

κ =1
2φ
′′(0)

with: φ′′(0) = γ2
b

2 ((ηπ1/2 erfcx(η))−1 − 1) and η = γb√
8γd

The relation between the parameters makes it possible to use the κ and τ calculated in the
previous in a Posterior Expectation estimator.

γn γd γb

0.1 0.4740 0.7684

4.2.2 Sampling the mean
Once the construction of the distribution was explained, it is needed to sample b. As it was
presented in section 4.3, the sample from each bi is independent. The posterior distribution is:

p(bi|y,x, γn, γd, γb) ∝ exp
(
−1

2
(
γd(bi − x̄i)2 + γb|bi|

))
(4.8)

where x̄i is the ith element of Dx.
In the original paper it is presented a way of sampling b using the inversion of the cumulative

distribution function. However, some numerical instability were encountered and some of the
sampled bi were equal to ∞. In order to solve this issue was implemented a step of verification
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of the data to find if any sample had diverged. In the affirmative case, a Metropolis-Hastings
algorithm was used to resample only the auxiliary variable bi that had diverged. This small
detail is very illustrative of the power that LMG and SMG has as only the sampled that
had presented instability had to be resampled, not the all the auxiliary variable. For the
Metropolis-Hastings used, the instrumental law used is a Gaussian distribution with standard
deviation of 2 which allowed for acceptance rate of about 62%.

4.2.3 Application to Laplacian Regularization
With those results, it is possible to use the parameters obtained in section 4.1 and use them in
the supervised PE estimator. In Figure 4.4 is shown the resultant estimation when using 2000
samples to calculate PE. The norm of the error obtained is 2.1105× 103. As it can be seen,
the result is really similar to the one obtained with the PM estimator. This again is important
as it shows that PE can obtain similar results to PM. In Figure 4.5 it can be seen that the
sampled auxiliary variable for the mean is really similar to the one that is determined with the
PM estimator in the previous section. The edge detection is precise around the borders and
show that created potential really has a similar behavior to the L2L1. Above all, this validates
that the LMG can produce auxiliary variables that are similar enough to their counterparts in
the Geman and Yang augmented criterion.
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Figure 4.4: Restored image using
the supervised Posterior Expectation
estimator with log-erf priors and

Laplacian regularization
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Figure 4.5: Auxiliary variable b when using
the supervised Posterior Expectation
estimator with log-erf priors and

Laplacian regularization

However, as it can be seen in Figure 4.6, the image of the standard deviation looses some of
its meaning because it is heavily influenced by the sampling of the auxiliary variables. This
behavior was observed in all the cases of this work when using LMG and, as it will be seen
ahead, the auxiliary variable brings more information than the standard deviation which is
clearly biased. For this reason, in the case of LMG will only be shown the auxiliary variable
even if, as it was said, in some cases as astronomy having the standard deviation is important.

In a last point, in the Figure 4.7 is compared the same row as in Figure 4.3 with the
absolute difference between the original image and PM estimation using Huber potential and
the absolute difference between the original image and supervised PE estimation. As it can be
seen, both results are really similar which show that the log-erf potential not only gives as
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Figure 4.6: Standard deviation when using the supervised Posterior Expectation estimator
with log-erf prior and Gradient regularization

good results as Huber potential, but also that the supervised PE estimation can be used to
obtain good results.
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Figure 4.7: Comparison using the line 100
(a) Original image (b) |x− x̂P M | (c) |x− x̂supervised P E |

4.3 Unsupervised Posterior Expectation
The unsupervised Posterior Expectation estimator needs to estimate all the hyper-parameters.
Since this estimation is done in an automatic way, it should be possible to obtain good results
both using the Laplacian and the Gradient Regularization. Most of the tools that are needed
to the unsupervised PE estimator were described in the previous section. The only missing
parameter is the one that is directly associated to the log-erf distribution, which is γb. Jeffreys
prior for the Laplace distribution h(b) is the same that for a Gaussian distribution, i.e.,
p(γb) = γ−1

b . The posterior distribution of γb is different in the Laplacian Regularization case
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and in the Gradient Regularization case and will be detailed ahead.

4.3.1 Laplacian Regularization
The first question that needs to be addressed it therefore the sampling o γb. For the Laplacian
regularization, the posterior distribution for γb is:

p(γb|y,x, γn, γd, b) = γN
b exp

(
−1

2γbN1(b)
)

where N1(b) =
∑N

i=1|bi|. This is a Gamma distribution and therefore can be easily sampled
from.

Now it is possible to sample from the posterior distribution using a Gibbs sampler. A first
PE estimation was made using 2000 samples. As it can be seen in Figure 4.8, γd do not
converge to the value determined in section 4.1, and it would likely be needed many more
samples to be sure that it is converging towards 8. However, the other parameters appear to
converge to close values of the ones determined previously in the PM estimation in section
4.1. As it can be seen in Table 4.1 the mean values for γn and γb are close enough to those
that were determined using PM. Furthermore, their standard deviation is small. As for γd the
mean and the variance calculated do not mean a lot as clearly the hyper-parameter diverges.
Finally ,he three hyper-parameter were also initialized with several different values and it was
observed a similar behavior i.e., the convergence of γn and γb and the divergence of γd.
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Figure 4.8: Hyper-parameters chain of values
(a) γn (b) γd (c) γb

PM PE
value mean std

γn 0.1 0.1002 0.0007
γd 0.4740 4.9141 2.6186
γb 0.7684 0.5540 0.0657

Table 4.1: Comparison of the values
of hyper-parameters determined by

PM and PE in the Laplacian Regularization

The reason why γd does not stabilizes seems to be due to a property of the log-erf distribution
in function of the variations of γd. In Figure 4.9 it can be seen that for γb constant and equal
the value that the unsupervised approach determined(γb = 0.5), the value of the potential
changes very little from γd = 0.4(determined in the PM estimation) to γd = 8 (the maximum
value attained by the unsupervised PE) for a same ∆xi. Because of this, the influence of γd is
very little and in fact most of the determination of the log-erf value ends up by being done by
γb. This does not explain however why γd rises instead of simply randomly varying. Finding
this explanation goes beyond the scope of this work, and therefore was not studied.

Another point that reinforces the credibility of the hypothesis that γd does not have a lot of
influence is the log-erf potential is observed in Figure 4.11. In there, it can be seen that even
if γd diverged, the auxiliary variable b can still detect borders as well as it happens in the
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Figure 4.9: Values of log-erf potential for different values of γd and γb = 0.5

supervised case. It can be considered therefore with all this information that the variations of
γd do not cause a major difference in the potential neither in the auxiliary variable and with
the elements analyzed before, it is possible to not be give much importance to it.

However, even if the rise of γd seems to not influence a lot the result, it might seem more
reliable to use the values of γd before they are to high. Therefore, the adopted strategy was to
use less samples. In Figure 4.10 can be seen the resultant estimation using only 200 samples.
The image is close to the one obtained using the PM estimator and the norm of the error was
of 2.1355× 103 which is close to the other results calculated using L2L1 potentials in section
4.1 and 4.2.
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Figure 4.10: Restored image using
the unsupervised Posterior Expectation

estimator with log-erf priors and
Laplacian regularization
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Figure 4.11: Auxiliary variable b when using
the unsupervised Posterior Expectation

estimator with log-erf priors and
Laplacian regularization

In the Figure 4.12 is compared the same row as in Figure 4.3 with the absolute difference
between the the original image and PM estimation using Huber potential and the absolute
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difference between the original image and unsupervised PE estimation. As it can be seen, in
here again both results are really similar. This means that the strategy of using fewer samples
seams to be a good one as it enables for similar results even if the hyper-parameters do not
converge to the value predicted in section 4.1.
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Figure 4.12: Comparison using the line 100
(a) Original image (b) |x− x̂P M | (c) |x− x̂unsupervised P E |

4.3.2 Gradient Regularization
For the Gradient Regularization, there is the need to have two different hyper-parameters for
the auxiliary distributions, one for the lines, γbl and one for the columns γbc. Their posterior
distribution is:

p(γbl|y,x, γn, γl, γc, bl, bc, γbc) = γN
bl exp

(
−1

2γblN1(bl)
)

p(γbc|y,x, γn, γl, γc, bl, bc, γbl) = γN
bc exp

(
−1

2γbcN1(bc)
)

both are Gamma distributions and therefore can be easily sampled.
With this distribution, it is possible to sample from the posterior distribution. Again in

here a first estimation was done using 2000 samples. In Figure 4.13 it can be seen that the
hyper-parameters seem to not converge and this behavior is observed for any set of initialization
that is made. This result could have been predicted as the hyper-parameters are unstable in
the case of the Laplacian regularization using the log-erf potential (section 4.3) and in the
case of the Gradient regularization (section 2.5).

Furthermore, it can be observed in Figure 4.14 that the auxiliary variable for the row bl

was unable to detect any border and the obtained image seems like noise. This is the result of
the parameter γl having decreased to values near 0. This caused the regularization term to
not have any more information on the operator for the rows, making the auxiliary variable to
become simple noise.

In order to try to obtain a result, the same idea of using only 200 samples that was used
before is done. For the initialization, the following parameters were chosen: γl and γc were
initialized with the values of γl and γc determined in section 2.2 for the quadratic case using
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Figure 4.13: Hyper-parameters chain of values
(a) is γn (b) is γl (c) is γc (d) is γbl (e) is γbc
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Figure 4.14: Auxiliary variables when using the unsupervised Posterior Expectation estimator
with log-erf priors and Gradient regularization
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the PM estimator; γbl and γbc were initialized with the values that the unsupervised approach
determined for the Laplacian regularization case. The following results seem to be relatively
sensible to the initialization of the hyper-parameters and those can not be the different
otherwise the estimation does not converge.

In Figure 4.15 it can be seen that the hyper-parameters converged for some values. In Table
4.2 can be observed the mean value of the hyper-parameters as for their standard deviation.
As it can be seen, the standard deviation is not very high. Clearly the estimation of the
hyper-parameters was at least partially successful as it gave really good results.
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Figure 4.15: Hyper-parameters chain of values
for 200 samples

(a) γn (b) γl (c) γc (d) γbl (e) γbc

PE
mean std

γn 0.0966 0.0018
γl 0.0435 0.0023
γc 0.0453 0.0026
γbl 0.4351 0.0318
γbc 0.5263 0.0340

Table 4.2: Values
of hyper-parameters determined by
PE in the Gradient Regularization

In Figure 4.16 it can be seen that the auxiliary variable were able to detect with a high
efficiency the borders of the image. They also have similar aspect with those that were
presented when using the Laplacian regularization. In addition to it, this result is even more
interesting because it estimates separately the vertical edges and the horizontal edges. This
confirms the importance of having a mixture model that can accept different regularization
operators as it can also be used to extract information from the image in an easy way.

As it can be seen in Figure 4.17 the resultant estimation is a really good one. The norm
of the error is 2.0172 × 103 which is one of the lowest norm of the error obtained from all
previous estimation. Furthermore, the result is aesthetically pleasant. The borders are well
defined in the general aspect of a clear and neat result.

Those results concludes the analyses on the unsupervised case of using the L2L1. In the
next section those results will be analyzed.
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Figure 4.16: Auxiliary variables when using the unsupervised Posterior Expectation estimator
with log-erf priors and Gradient regularization
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Figure 4.17: Restored image using the unsupervised Posterior Expectation estimator
with log-erf priors and Gradient regularization
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4.4 Results’ Analyses
The conclusions presented in here, even if they are illustrated with the results obtained in the
chapter, are quite general and can also be observed with other images as for different amount
of noise.

The most important conclusion is the confirmation that using unsupervised PE estimator
with LMG distributions enables for excellent results that are comparable to those obtained
using the PM estimator. Furthermore, the edges were effectively better preserved using the
L2L1 potential than when using the L2 potential and even if this is not quantified in the norm
of the error (as the difference is specially visible only in the edges), the details in the image are
more clear. This can be specially observed when comparing a single row and observing that
when using the norm L2L1 the difference of the image to the estimation is smaller, specially
around the edges. This is a known result in image processing literature, and therefore it was
important to verify it for the inverse problem treated in this work. In Table 4.3 are compared
the values of the norm of the error obtained in the different methods of this chapter.

Table 4.3: Comparison of norm of the error obtained using the different methods
and different regularization operators

‖x− x̂‖ PM PE
supervised supervised unsupervised

Laplacian 2.0008× 103 2.1105× 103 2.1355× 103

Gradient −− −− 2.0172× 103

The second important conclusion is that using the auxiliary variable brings important
information about the estimation. It not only enables to detect the borders but it can also be
used to check the quality of the estimator. An auxiliary variable that did not detect any edge
means that there was a problem during the estimation and that the results must be treated
with care because they can be wrong. This is another advantage of LMG over the normal
Gaussian as it provides another tool that can be used in order to analyze the results.

The final and more important conclusion is that the use of the Gradient regularization
effectively enables better results. Even if, as in the l2 potential case, this is not directly visible
through the norm or the error, it is clearly visible in the estimation itself. The image seems
clearer as it was better focused. Furthermore, the small crosses visible through the image
do not appear in the Gradient regularization, which makes the quality of the image really
better. In addition to that, having two separates auxiliary variables allow one to extract more
information from the image that can be used for other purposes. This confirms the importance
of the contribution that was made in section 4.1 that enables the use of LMG for more than
only one regularization operator.
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5 Conclusion and Further Development

5.1 Conclusion
The most important contribution of this work is the merge of the Rejection Perturbation
Optimization algorithm and the Mixtures of Gaussian in order to propose a broad class
of high-dimensional distributions that can be efficiently sampled and used in unsupervised
inverse problems. This contribution expands, beyond the Gaussian, the distributions that
high-dimensional inverse problem can efficiently use.

Applied to an image restoration problem, it was shown that being able to use other
distributions effectively brings better results to the estimation as those can be more adequate
to the problem that is treated. The restored images had a better quality over their counterparts
when using Gaussian priors. Furthermore, it is also proposed that the auxiliary variables that
are used in the construction of the Mixture of Gaussian can bring important information to
the problem as those are revealing of the main structures that the constructed distribution
aims to detect.

A final contribution is that, in image restoration, being able to construct priors that are
separable for the rows and column enables better results than when using a single regularization
operator. This is rather interesting as it motivates for the construction of distributions that
could exploit both operators.

5.2 Further development
This section details some points of development that appeared to be interesting the work, but
which considered during the work but were developed

5.2.1 Why hyper-parameters do not converge
Even if some elements of answer were given, those are much more empirical results than
mathematical proves. As it seems that those are related to the built distribution, it is important
to find why those distributions make that the hyper-parameters do not converge. Knowing
this could orient the choice of priors that are used in order to find those that guarantee that
hyper-parameters will not diverge.

5.2.2 Which distributions can be constructed using LMG and SMG
The framework proposed states that it is possible to efficiently sample from LMG and SMG.
However, it was not find any list or compilation of all functions that can be constructed using
those mixture. It would be an interesting thing to have this compilation or at least a way to
easily discover if a distribution can be constructed from a LMG (as the SMG case is already
treated).
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5.2.3 Location and Scale Mixture of Gaussian
In [13] it is proposed the creation of distributions that are created from Location and Scale
mixtures simultaneously. It is also shown that those distributions give some good results
in some case. It is likely that those distributions can also be constructing using the same
framework that was used for SMG and LMG and therefore efficiently sampled and used in
inverse problems.

5.2.4 Scale Mixture of Gaussian with more distributions
As it was shown, using more than only one regularization operator should bring better results.
However, in the framework developed to SMG, only one operator can be used. This is because
the partition function of the Gaussian part would be of the form (with only two operators):

C−1
G ∝ det

(
DT

1 S2
1D1 + DT

2 S2
2D2

)1/2

The problem is that, even if D1 and D2 were diagonalizable in the same base, S2
1 and S2

2
would not be and therefore the determinant could not be written as a product of separable
s1;j + s2; j.

However, it was considered during - the work but not further developed - that if D1 and
D2 are similar to each other in a permutation way (as it is the case for the Gradient operator
used in this work) then it should be possible to write the mixture as a product of separable
s1;j + s2; p(j) where p(j) is a permutation of the line j.
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