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Abstract Determining the optical flow of a video is

a compute-intensive task essential for computer vision.

For achieving this processing in real-time, the whole

algorithm deployment chain must be thought of for ef-

ficiency first. The development is usually divided into

two parts: first, designing an algorithm that meets pre-

cision constraints, then, implementing and optimizing

its execution on the targeted platform. We argue that

unifying those operations enhances performance on the

embedded processor.

This paper is based on an industrial use case of

computer vision. The objective is to determine dense

optical flow in real-time on an embedded GPU plat-

form: the Nvidia AGX Xavier. The CLG (Combined

Local-Global) optical flow method, initially chosen, is

analyzed to understand the convergence speed of its
underlying optimization problem. The Jacobi solver is

selected for implementation because of its parallel na-

ture. The whole multi-level processing is then ported

to the GPU, using several specific optimization strate-

gies. In particular, we analyze the impact of fusing the

solver’s iterations with the roofline model.

As a result, with a 30W power budget, our imple-

mentation runs at 60FPS, on 640 × 512 images, with

a four-level processing. Hopefully, this example should

provide feedback on the issues that arise when trying

to port a method to a parallel platform and serve for

further implementations of computer vision algorithms

on specialized hardware.

Mickaël Seznec · Alvin Sashala Naik
Thales Research and Technology. Palaiseau, France
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1 Introduction

Computer vision has become an essential aspect of wi-

dely adopted electronic devices in various fields: me-

dicine [8], unmanned flight [15], or autonomous driv-

ing [6], for instance. The constant progress of these ap-

plications is driven by more sophisticated algorithms

and more efficient hardware architectures. As both of

these fields continue to progress, the difficulty of finding

an optimal match between the two increases.

On the one hand, the algorithm design space of

image processing methods is broad. New techniques

are constantly developed that often depend on hyper-
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Fig. 1: For the same framerate on Jetson Xavier, our

GPU-optimized multi-scale CLG Optical Flow con-

verges further than the initial implementation.
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parameters to control a trade-off between the speed and

accuracy of the results. On the other hand, modern

hardware architectures such as GPUs (Graphics Pro-

cessing Units), FPGAs (Field-Programmable Gate Ar-

ray), or SIMD (Single-Instruction Multiple-Data) pro-

cessors have successfully improved the execution of vi-

sion algorithms. The increasing complexity in both of

these domains calls for expertise that keeps being more

and more specific. It is then challenging to combine

these two skills to find an optimal match between the

algorithm and the target.

In this article, we focus on the optical flow prob-

lem. The goal is, given two successive frames of a video,

to find a per-pixel displacement vector. First numeri-

cal methods to solve it have been found by Horn and

Schunk in the 1980s [12] and numerous refinements have

been developed since [9,3]. For our analysis, we consider

the CLG (Combined Local-Global) method [4], because

it serves in an industrial application we use.

Our analysis then serves two goals. First, finding

the impact of the solver choice and the values of hyper-

parameters on the speed of the CLG method. This ini-

tial study gives rise to an initial implementation on the

NVIDIA Jetson AGX Xavier, an embedded GPU SOC

(System On Chip). Doing optical flow processing on

this kind of lightweight device is crucial for power con-

strained systems, like drones [15]. The other goal is find-

ing efficient optimization procedures for the CLG algo-

rithm to achieve maximum performance. Overall, the

study aims at finding algorithm-implementation syner-

gies through the perspective of optical flow processing.

The main novelties brought by this article are listed

below.

– It extends previous work [20] on the influence on

speed and accuracy of the hyper-parameters of the

CLG optical flow. Notably, the spectral radiuses of

splitting solvers are provided, and new performance

results on the Xavier GPU are presented.

– It introduces a complete algorithm implementation

on the Jetson AGX Xavier, optimized in-depth with

diverse techniques: buffer re-utilization, solver iter-

ation fusion, and kernel launches batching.

– It analyses the impact of the multi-scale scheme on

the performance of our implementation.

The rest of this article is structured as follows: sec-

tion 2 outlines related work on optical flow process-

ing for real-time systems and optimization strategies

for parallel systems. Section 3 introduces mathemati-

cal notations for optical flow and analyzes solvers and

hyper-parameters on the convergence speed. Section 4

deals with the implementation optimizations on GPU

and focuses on arithmetic intensity to explain achieved

performance. Section 5 concludes this paper and gives

direction for further work.

2 Related Work

Optical flow has received a lot of attention since pi-

oneering numerical methods introduced by Horn and

Schunk [12] and Lucas & Kanade [14]. From there,

many refinements have been incorporated on top of

these frameworks. Review papers [2,22] explore com-

prehensively the different strategies used for computing

optical flow.

In this article, we focus on a differential method,

a family introduced by Horn & Schunk. It consists of

minimizing a penalization function usually composed of

two types of terms: model attach and regularization. On

top of the original penalization function found in [12],

Farnebäck et al. replace the linear interpolation with a

quadratic one for better accuracy [9]. Brox et al. add a

gradient conservation term [3] while Zach et al. use a

L1-norm penalization instead of a quadratic one [26] to

obtain better-defined object boundaries. The selected

algorithm for our study is the CLG (Combined Local-

Global) method, as defined by Bruhn et al. [4]. This

method adds a neighboring condition to the model at-

tach term, similar to the one found in [14]. This unifying

model is less sensitive to noise, as the local information

is averaged over multiple pixels. We consider this algo-

rithm fixed in our work, so our results match the orig-

inal implementation’s accuracy. A detailed comparison

with other related methods is made in [22].

Efficient implementation has always been key to an

attractive optical flow method. For CLG, a CPU imple-

mentation has been described in [13] and Moussu [16]

detailed its GPU counterpart. With respect to this pre-

vious work, our article details how to choose the right

solver and hyper-parameters of CLG for fast conver-

gence. It is completed by GPU optimizations, especially

for the Jacobi solver.

There is plenty of literature about GPU optimiza-

tion for linear algebra. Kernel fusion is a frequent tech-

nique manually applied to a sparse CG (Conjugate Gra-

dient) solver in [1], or BCG (Biconjugate-CG) in [23].

Filipovic et al. propose a source-to-source compiler to

perform fusion at the compilation stage [10]. Regarding

the Jacobi solver specifically, Aslam et al. have bench-

marked many computations and synchronization tech-

niques. We differ from this work by not relying on sparse

matrices to implement the Jacobi solver but by directly

implementing the operators defined by those matrices.

An implemenation on massively parallel processors of

this solver is studied in [18] and also analyse the trade-

off between memory locality and overhead computa-
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tions. In [17], Nguyen et al. compare several GPU sol-

vers for fastest convergence and comes to similar con-

clusions as ours: more iterations on simpler solvers are

more efficient on GPUs.

To guide our optimization strategy, we rely on the

roofline model, as introduced by Williams in [24]. It

analyses a program’s run based on its arithmetic in-

tensity and the performance limits of the hardware in

terms of memory and compute throughput. It is a gen-

eral and powerful tool to find bottlenecks in an appli-

cation that has already been used for GPUs [7].

3 Method-level approach

In this section, we examine the CLG algorithm from

a mathematical perspective. This first analysis serves

our optimization method by highlighting the degrees of

freedom allowed by our application. After giving some

mathematical context, we then explore the implications

of the solver choice and the tuning of hyper-parameters.

3.1 Modeling optical flow

A category of optical flow algorithms provides a result

by finding the solution to an optimization problem. In

this section, we introduce the mathematical notations

associated with this optimization problem.

The variables are named using the following con-

vention: the lowercase a ∈ R is a coefficient, the bold

lowercase a ∈ Rn is a vector, the uppercase A ∈ Rn×m
is a matrix. The over-line symbol ā ∈ RIh×Iw repre-

sents the field a over a two-dimensional image. Like-

wise, ā is a vector field, Ā is a matrix field. Finally,

the double bar notation introduces flattened fields: ¯̄a is

a two-dimensional field represented as a vector with a

row-major convention.

In a sequence of images at time t, the optical flow at

(x, y) is noted wx,y,t = (ux,y,t, vx,y,t, 1)T . It has three

components: ux,y,t and vx,y,t are the displacement in

the x and y axis, respectively, with the time displace-

ment equals 1. We also introduce w∗ = (ux,y,t, vx,y,t)
T ,

for ease of notation.

Finally, fx,y,t represents the pixel intensity of the

frame at time t, at coordinates x, y. Images are gray-

scale, so fx,y,t is a scalar. Later in the article, and for

the sake of brevity, we may omit the x, y, t indices, so

wx,y,t becomes w, for example.

With the variables now set, we present an energy

definition that serves as a framework for many varia-

tional methods

E(w̄) =

∫
Ω

D(w, f̄) +R(w) dxdy (1)

where D is the data-fitting term while R plays the role

of regularization, and Ω represents the 2D image do-

main.

For example, in [12], Horn & Schunck set D and R

to

DHS(w, f̄) := wTJ0w, and (2)

RHS(w) := α
(
‖∇x,yux,y‖2 + ‖∇x,yvx,y‖2

)
, (3)

where ∇x,y is a two-dimensional spatial gradient and

α ∈ R+ is the trade-off between data fitting and regu-

larization penalization. J̄0 is a matrix field and corre-

sponds to a quadratic penalization of the image inten-

sity conservation, eq. (4), with a linear approximation,

eq. (5) of the image’s values

‖f̄(x+ u, y + v, t+ 1)− f̄(x, y, t)‖2 (4)

≈ ‖f̄(x, y, t) +∇f̄(x, y, t)Tw − f̄(x, y, t)‖2 (5)

= ‖∇f̄(x, y, t)Tw‖2 (6)

= wT∇f̄(x, y, t)∇f̄(x, y, t)Tw (7)

= wTJ0w. (8)

With this definition, the data-fitting term only incorpo-

rates pixel-wise intensity conservation. In [4], Bruhn et

al. leverage the energy penalization found in [14] to av-

erage the intensity conservation over the pixel’s neigh-

borhood.

DBruhn(w, f̄) := wTJρw, with (9)

Jρ = (Kρ ~ J̄0)(x, y, t) and ρ ∈ R+. (10)

Here, Kρ is a 2D Gaussian kernel with a standard devi-

ation ρ, and ~ is a per-channel 2D-convolution operator

applied to the matrix field J̄0. It means that the solu-

tion w should solve its intensity conservation equation

and its neighbors’.

By replacing D by eq. (10) and R by eq. (3) in

eq. (1), we have the CLG (Combined Local-Global)

model, as defined in [4]

ECLG(w̄) :=

∫
Ω

wTJρw

+ α(‖∇x,yu‖2 + ‖∇x,yv‖2) dxdy. (11)

The convex optimization problem is now entirely

defined. It is usually solved with an iterative gradient

descent technique: each step yields a new approximate

solution by displacing the current solution towards the

opposite direction of the gradient. Two methods exist to

compute the gradient of E(w̄): the first one considers

f̄ and w̄ to be continuous functions and employs the

Euler-Lagrange equations. The second one discretizes



4 Seznec et al.

f̄ and w̄ over the two-dimensional pixel grid first. This

version is detailed in this article, with

ECLG( ¯̄w∗) = ¯̄wTH ¯̄w + α
(
‖DxSu ¯̄w∗‖2 + ‖DySu ¯̄w∗‖2

+ ‖DxSv ¯̄w∗‖2 + ‖DySv ¯̄w∗‖2
)
. (12)

Equation (12) introduces ¯̄w, a 3 × Ih × Iw vector,

such that ¯̄wT =
[
¯̄uT ¯̄vT ¯̄1T

]
, similarly, ¯̄w∗T =

[
¯̄uT ¯̄vT

]
.

Su and Sv are diagonal matrices that respectively select
¯̄u and ¯̄v parts of ¯̄w. Dx and Dy are discrete partial

derivative operators along the x and y axes.

H is composed of diagonal matrices

H =

diag ¯̄jρ,0,0 diag ¯̄jρ,0,1 diag ¯̄jρ,0,2
diag ¯̄jρ,1,0 diag ¯̄jρ,1,1 diag ¯̄jρ,1,2
diag ¯̄jρ,2,0 diag ¯̄jρ,2,1 diag ¯̄jρ,2,2

 , (13)

with

Jρ =

jρ,0,0 jρ,0,1 jρ,0,2jρ,1,0 jρ,1,1 jρ,1,2
jρ,2,0 jρ,2,1 jρ,2,2

 . (14)

Let us now compute the derivative of eq. (12) with

respect to ¯̄w∗

∇ ¯̄w∗ECLG( ¯̄w∗) = 2Su,vH ¯̄w

+ 2α
(
STu (DT

xDx +DT
y Dy)Su ¯̄w∗

+ STv (DT
xDx +DT

y Dy)Sv ¯̄w∗
)

(15)

Su,vH ¯̄w =

[
diag ¯̄jρ,0,0 diag ¯̄jρ,0,1
diag ¯̄jρ,1,0 diag ¯̄jρ,1,1

]
¯̄w∗ +

[¯̄jρ,0,2
¯̄jρ,1,2

]
. (16)

The selection matrix Su,v is necessary as H is applied

to the vector ¯̄w that contains ones in addition to u’s

and v’s.

Equation (15) should now be set to zero to find a

minimizer of ECLG. By doing so, we obtain an equation

of the generic form Ax = b where

A =

[
diag ¯̄jρ,0,0 diag ¯̄jρ,0,1
diag ¯̄jρ,1,0 diag ¯̄jρ,1,1

]
− α

[
L 0

0 L

]
(17)

with L = DT
xDx + DT

y Dy, bT = −[¯̄jρ,0,2,
¯̄jρ,1,2]T , and

x = ¯̄w∗.

3.2 Solver Overview

The linear system of equations Ax = b can be solved

in various ways. However, the characteristics of the op-

tical flow setting restrict the choice of possible solvers.

In a typical environment, with an HD image stream

of dimensions 1280 × 480, there are over 2 · 109 coef-

ficients in the matrix A. As is, an embedded system

would never be able to store the whole matrix. Hope-

fully, the matrix is sparse, with more than 99.999% of

its coefficients being zeros. It is then crucial to find a

solver that takes advantage of this sparsity to make the

computation possible on embedded devices.

The two following sections present two principal fa-

milies of solvers for the optical flow. First, matrix split-

ting methods have been chosen in seminal work on flow

estimation [12] and remain widely used to solve these

linear systems [13]. Second, Krylov methods are often

used for numerical simulations and benefit from a well-

supplied scientific corpus [19].

3.2.1 Matrix Splitting

The matrix splitting methods partition the matrix A

into two: A = B + C. Using this equality in Ax =

b yields Bx = b − Cx. Assuming B is invertible, an

iterative scheme is constructed

xk+1 = B−1(b− Cxk) (18)

xk+1 = (I −B−1A)xk +B−1b. (19)

The choice of B leads to different methods. For ex-

ample, choosing B to hold the diagonal of A: BJ := DA

is the Jacobi solver, while BGS := DA+LA is the Gauss-

Seidel method (with LA, the lower triangular part of

A).

In the case of optical flow problems, we can craft

custom B matrices based on the structure of A. These

variants contain the four non-empty diagonals of A

B
(diags)
J :=

[
diag ¯̄jρ,0,0 − αDL diag ¯̄jρ,0,1

diag ¯̄jρ,1,0 diag ¯̄jρ,1,1 − αDL

]
(20)

B
(diags)
GS :=

[
diag ¯̄jρ,0,0 − αLL diag ¯̄jρ,0,1

diag ¯̄jρ,1,0 diag ¯̄jρ,1,1 − αLL

]
. (21)

This construction of B matrices is called the pointwise-

coupled method in [13], as these matrices update ux,y
and vx,y simultaneously. Later in this article, we call

these versions “preconditioned” by analogy with the

Krylov methods.

The spectral radius ρSR of I−B−1A must be studied

to show how the specially designed matrices compare to

the traditional ones. At each iteration of the solver, the

error’s norm ‖ek‖2 = ‖b − Axk‖2 is multiplied by a

factor ρSR. The end goal is then to find a matrix B

such that the corresponding ρSR is as close to zero as

possible.

Figure 2 presents results for the Jacobi and Gauss-

Seidel solvers with their derived pointwise-coupled me-

thods. The optical flow is analyzed under two parameter

settings, with α = 5e−3 or α = 5e−6. The plot shows

− log(ρSR) for easier comparison between solvers. Note
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Fig. 2: Comparison of the theoretical convergence speed

of the Jacobi and Gauss-Seidel (GS) methods. Stan-

dard solvers are refered by None and precontioned, or

pointwise-coupled, variations with Diagonals.

that finding ρSR is a computationally heavy task, so

this numerical analysis is done on cropped images from

the Middlebury dataset [2].

We can draw three conclusions from fig. 2. First, a

low alpha dramatically increases the convergence speed

for all types of solvers by factors of 20 ∼ 100. Second,

with the same flow parameters, Gauss-Seidel is about

three times faster than Jacobi. Last, the pointwise-cou-

pled method is useful only in a low alpha setting where

a 5× speedup is achieved.

3.2.2 Krylov’s methods

Krylov solvers all emerge from the same premise: at

each iteration, increase the possible solutions’ space’s

dimension. Such spaces, called Krylov spaces, are de-

fined by

Kn(A, b) = span{b, Ab, A2b, . . . , An−1b}, n ∈ N∗. (22)

The choice of the solution in these subspaces leads to

different methods: Conjugate Gradient (CG), MINimal

RESidual (MINRES), or Generalized Minimal RESid-

ual (GMRES), for example.

The speed of Krylov’s methods depends on the ma-

trix condition number κ of the matrix A. This charac-

teristic quantifies how much our model’s result changes

with a small perturbation in the input data. A low

condition number reflects a robust modelization of our

problem. It also hints that Krylov solvers should con-

verge rapidly [21].
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Fig. 3: Normalised condition number of the problem

versus parameters’ value.

Sometimes, the system can be enhanced by the use

of a preconditioner M . With M being an invertible ma-

trix, the linear system to solve becomes

M−1Ax = M−1b. (23)

Solving the system eq. (23) is equivalent to solve Ax =

b with a change of variables A′ = M−1A and b′ =

M−1b. This system should be faster to solve if κ(A′) <

κ(A).

Similarly to the pointwise-coupled matrices defined

for splitting solvers, a natural preconditioner for the

optical flow is

M =

[
diag ¯̄jρ,0,0 − αDL diag ¯̄jρ,0,1

diag ¯̄jρ,1,0 diag ¯̄jρ,1,1 − αDL

]
. (24)

Figure 3 summarizes the value of κ for several model

parametrizations: with ρ, the local radius parameter,

ranging from 0 to 6 and α, the global regularization

weight, from 1e−5 to 10. The values shown are the ratio

κ by κ0 with κ0 the value of κ taken with α = 0 and ρ =

0. Just like in section 3.2.1, images have been cropped

to compute κ.

We can now conduct a similar analysis for fig. 3

as we did for fig. 2. First, without preconditioning, κ

follows a V-shape with respect to α. However, with a

preconditioner M defined as in eq. (24), κ always in-

creases with α. This difference is important, as, for low

values of α, the preconditioner decreases κ by orders of

magnitudes. With higher values of α, though, the effect

of M is barely noticeable. Finally, we can assert that

increasing ρ is significant with low α and no precondi-

tioning.

Figure 3 confirms the results of fig. 2: solvers are

the fastest when preconditioned and with low α values.

The effect of α can be analyzed by looking back at

eq. (11): with α close to zero, most of the penalization

comes from wTJρw. This term is directly sensitive to

the value ρ. Moreover, the preconditioner M “targets”
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this term. It is then not a surprise to see how effective

it is with low α.

With high values of α, the term ‖∇x,yu‖2+‖∇x,yv‖2
dominates. Then, the influences of ρ and M are negli-

gible. Conversely, κ increases because the solution is

solely determined by having a zero derivative so that

any constant field would be a potential solution.

3.3 A coarse solver benchmark

While sections 3.2.1 and 3.2.2 presented theoretical re-

sults for solver convergence on small images, the actual

performance is yet to be measured. In this section, we

are interested in two indicators: convergence vs. itera-

tions and convergence vs. time. The data is averaged

over 30 images from several databases [2,5,11].

Since convergence vs. iterations is platform-inde-

pendent, we can rely on it as an initial filter for limiting

the number of solvers to test on the target hardware.

Then comes an implementation on target for the ac-

tual solvers’ performance. In fact, a performant solver

under the convergence vs. iterations measure may be-

come less attractive if the time to perform one iteration

is too slow on the targeted hardware.

3.3.1 Convergence vs. iterations

For fig. 4, we chose two sets of parameters to compare

the convergence of the solvers mentioned above. We

tried several Krylov solvers from the sparse module of

Scipy but only reported Conjugate-Gradient (CG) as it

was the most relevant. We developed two splitting me-

thods: Jacobi and Red-Black Gauss-Seidel (Red-Black

GS). The more traditional Gauss-Seidel solver has been

discarded from the benchmark. It requires all pixels to

be treated sequentially and thus is not appropriate for

a parallel implementation. Red-Black GS is a variation

on Gauss-Seidel that updates half of the pixels simul-

taneously [19].

The results differ greatly depending on α. On fig. 4,

when α is low, preconditioned method converges quickly

(up to 10−9 in 100 iterations). The CG method is the

fastest, but splitting methods are not far behind. On the

contrary, when α is higher, all solvers converge slowly

(∼ 10−5 in 100 iterations), and splitting methods are

still slower.

Consistently with the results found in section 3.2,

the effects of the preconditioner are less visible with

higher α. On the left graph of fig. 4, the preconditioned

helps the convergence of CG a little, but not as much as

when α = 5e−6. Regarding splitting solvers, the results

with or without preconditioning overlap.
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Fig. 4: Convergence vs. iterations with ρ = 2.5. On the

lest α = 5e−3, on the right α = 5e−6

3.3.2 Convergence vs. time

This subsection presents solvers’ results as implemented

on the embedded target GPU: the Jetson AGX Xavier.

The time spent on all implementations was roughly

equal. Splitting solvers’ implementation is relatively straight-

forward: all (Jacobi) or half (Red-Black GS) of the pix-

els are updated in parallel, in a “embarrassingly paral-

lel” fashion.

For the Conjugate-Gradient method, one difficulty

is to compute a vector’s norm. This operation is not

so well adapted to GPUs. Then, we leveraged the CUB

library (CUDA UnBound) for state-of-the-art GPU re-

duction performance. We, moreover, took extra care to

keep all intermediate results on GPU to avoid expensive

latency in CPU-GPU communication.

Figure 5 shows convergence timings for different sol-

vers on GPU until they reach a runtime of 200ms. Glob-

ally, the curves follow the same trend as fig. 4 and the

order of the curves is respected. Splitting solvers are,

however, catching up with CG’s performance.

With a low alpha (left-hand side), Jacobi and Red-

Black GS are faster than CG in the very first iterations

and stay close to CG’s performance for a longer time.

With a high alpha (right-hand side), all preconditioned

methods are on par.

An important finding of the benchmark is that the

Conjugate-Gradient method is sensitive to numerical

precision. On the right-hand side graph of fig. 5, the

method diverges after about 100ms of compute. While

arithmetic is done in FP32 (IEEE 754 binary32 ) preci-

sion, we observed identical behavior in FP64 [20]. This

phenomenon also happened with α = 5.0e−3, after a
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Fig. 5: Convergence vs. time on a Jetson AGX Xavier.

Parameters are the same as on fig. 4.

vast number of iterations, though. We attribute this di-

vergence to the sensitivity of the Conjugate-Gradient

method to roundoff errors [25].

For further optimization, Jacobi was chosen as it is

the simplest to implement, with adequate performance

and good numerical stability. As described later in the

article, it is also possible to fuse iterations of Jacobi.

4 Implementation-level approach

This section extends the analysis done in section 3. As a

starting point, the solver is now considered fixed. That

choice is possible thanks to the initial benchmark on

the actual target.

An initial implementation of the CLG method on

GPU is done, including the underlying solver and the

multi-scale strategy, as detailed in [13]. First, we find

sources of optimizations for the solver or elsewhere in

the method. Then, we analyze the effects of multi-scale

processing by measuring the performance of working on

a particular level and the computational cost of chang-

ing scale.

4.1 Framework and optimizations

When optimizing the code, it is essential to follow a con-

sistent strategy. One must profile the application first

to find its main bottlenecks, then try to solve these

hotspots, and always check that the application pro-

vides the same results. On the Jetson AGX Xavier plat-

form, Nsight Systems and Nsight Compute are two NVIDIA-

provided tools that profile executions of programs.

Input Jacobi Output
1

4

2

5

3

cudaMemcpy(..., cudaMemcpyDeviceToDevice)

In/Out Jacobi In/Out
1

4

2

3

Fig. 6: Two iterations of Jacobi without (top) or with

(bottom) buffer reuse. Top version reads from (1),

writes to (2), copies output to input (3) and does a new

iteration (4) and (5). Bottom version avoids copying by

using buffers as both input or output.

The first one analyzes the whole system and pro-

vides CPU and GPU execution traces. This information

highlight which kernels would benefit the most from op-

timization.

The second one dives deeper into a single kernel

execution. It provides multiple metrics such as GPU

cores occupancy, bandwidth, or a roofline model plot.

These lower-level indicators facilitate the discovery of

bottlenecks within the kernel.

4.1.1 Optimizations’ overview

In this sub-section, we detail the different optimizations

that we added to our CLG GPU implementation. They

are standard techniques known in the literature, but

their application for optical flow is original, as well as

their analysis in this context. We present them in their

order of importance: after each optimization, a new

hotspot is selected until speed gains become marginal.

Buffer Reuse: this optimization acts on the Jacobi

solver. At the k-th iteration, the program needs one lo-

cation in memory for the input x(k) and one for the

output x(k+1). An initial approach is to fix the mem-

ory position of inputs and outputs. This strategy then

rely on a copy of the previous output to the current

iteration’s input: x(k) ← x(k−1). The memory opera-

tion can be avoided by changing the input and output

locations at each solver iteration, in a back-and-forth

fashion. Figure 6 illustrates this technique.

Jacobi Fusion: the Jacobi solver consumes a lot of

memory bandwidth: for each pixel, it fetches a neigh-

borhood of values to compute the Laplacian in addition

to coefficients from b. All this data is processed with

few operations: the solver is bandwidth limited. Our

solution is to combine the computation of several itera-

tions within a single kernel launch. This optimization is
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probably the most important one so that section 4.1.2

extends its analysis.

Batched convolutions: the multi-scale processing

of CLG relies on up and down-sampling the image to

solve the problem at different scales. This change of res-

olution uses a Gaussian kernel convolution on images

to preserve the down-sampling for high-frequency arti-

facts. Rather than launching a CUDA kernel for each

convolution, we prefer to launch a single kernel that

performs convolutions on many images at once. This

means that the kernel launch overhead is limited and

that the Gaussian filter weights are loaded once and

reused for all images.

4.1.2 Fusing iterations of Jacobi

As mentioned previously, the main issue of the Jacobi

solver on GPU is its high demand for memory resources.

As is, the implementation saturates the VRAM band-

width, and GPU compute units are starving. To quan-

tify the phenomenon, let us introduce the arithmetic

intensity of a program defined by the ratio between

the number of floating-point operations (FLOPs) per-

formed by a computed unit over the number of bytes

moved to do these operations

AI =
FLOPs

Bytes loaded
. (25)

A low AI is symptomatic of over-used memory band-

width. Conversely, if AI is too high, the program re-

quests so many FLOPs that the compute units cannot

process them fast enough. Further analysis of the role

of AI on a program’s execution may be found in [24].

In our initial case, the CUDA kernel is programmed

to do a single Jacobi iteration. This approach is straight-

forward but has several limitations: it requires one ker-

nel launch per iteration so that the call overhead might

become an issue. Moreover, each iteration output is

written back to main memory, but this is not strictly

needed. Combining several iterations within the same

kernel would allow direct reuse of intermediate itera-

tions in addition to load coefficients of b only once.

Bottom fig. 7 exposes a fusion of two iterations of

Jacobi within a single kernel launch. Static parameters

are loaded once and serve for both iterations. The out-

put of the first Jacobi iteration is immediately reused

for the second one. The two-iteration scheme requires

loading a larger neighborhood of x values to satisfy all

further dependencies.

Another important aspect of this implementation

is shared memory. In the CUDA model, GPU threads

are partitioned into Thread Blocks (TB). Threads of a

common TB are executed on a single processing unit,

Parameters

x(k)

AI = 5
5+5

= 0.5

CUDA
Thread

x(k+1)

Parameters

x(k)

CUDA
Thread

AI = 5×5+5
5+13

≈ 1.7

x(k+1)

x(k+2)

Fig. 7: Top: an iteration of Jacobi for a single output.

Bottom: fusion of two Jacobi iterations. Arithmetic in-

tensity is given for reference only, assuming one opera-

tion per x(k).

the streaming multiprocessor, and have access to shared

memory. This location is used to share the coefficient of

x between GPU threads, leveraging the pixels’ neigh-

borhoods’ spatial redundancies.

For now, let us set the TB size to 32× 32. Initially,

each thread of the TB load one coefficient of x(k) from

the main memory to the shared memory. Then, threads

compute a first Jacobi iteration and wait for the TB

to have finished thanks to the synchronization primi-

tive syncthreads. With the x(k+1) coefficients being

computed, the TB computes the subsequent Jacobi it-

eration.

Let us now find the approximate value of AI based

on an implementation that fuses j iterations. At each

new iteration, the size of the computed area decreases

because of spatial dependencies. At the i-th iteration,

i ≤ j, the footprint’s size is (32 − 2i) × (32 − 2i). We

can now express AI as a function of j, the number of

fused iteration

AI(j) =
α
∑j
i=1(32− 2i)2

β(32× 32)
(26)

α is the number of FLOPs needed per pixel and per

iteration and β is the number of bytes to load per pixel.

While the AI expressed in eq. (26) increases with

j and then seems to benefit the implementation, it is

important to understand that the total FLOPs required
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Fig. 8: Arithmetic intensity and mean thread utilization

w.r.t. the number of fused iterations.

by the algorithm are not constant with j. A single non-

fused Jacobi needs

Wno fusion = αHW. (27)

operations. With H and W the dimensions on the pro-

cessed image. In comparison, in a j-fused implementa-

tion, each TB computes a patch of (32−2j)2 pixels. To

compute the entire image, we have

Wj-fusion = d H

32− 2j
ed W

32− 2j
eα

j∑
i=1

(32− 2i)2. (28)

Some operations are redundant with the fused itera-

tions technique to handle patch borders and avoid inter-

TB communication.

The ratio between Wj-fusion and j · Wno fusion ex-

presses the overhead of operations due to the fusion of

operations

Wj-fusion

jWno fusion
≈ 1

j(32− 2j)2

j∑
i=1

(32− 2i)2 (29)

The left-hand side graph of fig. 8 shows the AI for

different choices of j, the number of fused iteration. The

solid curve represents the AI computed by the formula

in eq. (26). The dashed curve is arithmetic intensity di-

vided by the compute overhead, as expressed in eq. (29).

The raw AI is an increasing function of j: by look-

ing at this metric only, it would make sense to choose

j as large a possible to reduce the memory pressure.

Conversely, the refined metric, compensated AI, indi-

cates that because higher values of j induce too much

redundant work, it is better to choose j close to 5.

The right-hand side of fig. 8 shows the percent-

age of active threads during the entire fused iteration.

With each supplementary fused iteration, the footprint

of computable coefficients shrinks, so fewer threads are

operating.

This study of the Jacobi iteration fusion has exhib-

ited the pros and cons of using many fused iterations.

While done in a theoretical setting, it should help to

analyze GPU execution performance.

4.2 Results

To measure the effects of the various optimizations pre-

sented in section 4.1.1, we have taken measurements on

two GPU cards. The first one, an NVIDIA Titan V, is

used in PCs and computing servers. We use it as the

baseline of our development process. The second one,

a Jetson AGX Xavier, is the actual target of our in-

dustrial application. After initial implementation and

verification on Titan V, we deploy on Xavier, and we

check if the optimization has the expected effect.

In our method, the optimizations’ order is guided

by results on the Jetson Xavier. For example, fig. 9

shows us that once the buffer reuse optimization is im-

plemented, the time spent in memory transfers is still

relatively high on Titan V but not on Xavier. Since we

ultimately focus on this embedded target, we will not

dwell on further optimization for memory transfers.

All the details about the hardware used for our ex-

periments are available on table 1.

Machine #1: desktop
Machine #2: embedded

(Jetson AGX Xavier)

OS Ubuntu 16.04 Ubuntu 18.04
Linux Kernel 4.15.0 4.9.140
CUDA 11.0 10.2
NVIDIA Driver 450 JetPack 4.4
CPU Intel i7-3820 8-core ARM 64bits
GPU Titan V (arch. 7.0) Xavier (arch. 7.2)
TDP ∼500W ∼30W

Table 1: Environments of the experiments.

Buffer Reuse: On the initial runtime bar of fig. 9,

we can see that a good part of the computation time

spent on GPU is dedicated to memory transfers. The

effects of the buffer reuse optimization are pretty dif-

ferent depending on the platform.

On Jetson Xavier, we can see that the time spent in

memory operations goes from about 3ms to 0.5ms. The

remaining memory time is spent uploading the input

images and downloading the output flow. A further op-

timization could lead to marginal gains by using Unified

Memory. This makes buffer transfers with zero-copy be-

cause the GPU and the CPU share the same memory.

On Titan V, we can see that those memory opera-

tions still require a lot of time (∼33% of the computa-

tion time). This is explained by the fact that the CPU

and GPU memory are disjoint, so it takes more time
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Fig. 10: A roofline model analysis of Jacobi iteration

fusion on Titan V.

(proportionally to the power of the machine) to trans-

fer the inputs and outputs.

Jacobi Fusion: tests shown on figs. 10 and 11 eval-

uates the performance of different number of fused Ja-

cobi iterations, as explained in section 4.1.2. Figure 10

plots the achieved TFLOP/s (Tera Floating-Point Op-

erations per second) with respect to the measured arith-

metic intensity. This figure first shows that, for Titan

V, the FP64 machine balance is reached for an AI of

10, while 20 is needed for FP32 operations. This value

exposes the minimum number of operations per byte

1 2 3 4 5 6 7 8 9 10 11 12

Number of fused iterations
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S
p

ee
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Fig. 11: Speedup vs. number of fused iterations on Titan

V.

to compute to benefit from maximal hardware perfor-

mance.

Without any fusion, it is clear that both FP32 and

FP64 implementations are bandwidth-limited. As ex-

pected, the arithmetic intensity of increases with the

number of fused iterations. With an ideal execution, the

points should appear close to the roofline. Here, after

few fusions, it is clear that the progression stalls. While

the FLOP/s continue to increase, this growth is not

sufficient to stay close to the roofline. We explain this

behavior by the low number of active threads within a

TB, as modeled on fig. 8. At each new fused iteration,

the size of the region of interest of a TB decreases, then,

more of its threads are idle.

Comparing raw performance on fig. 10 is complex.

The FLOP/s metric, given by Nvidia Nsight Compute,

directly measures the activity of computing units. As

explained in section 4.1.2, some computations are re-

dundant from the method point-of-view. To correct the

FLOP/s metric, we divide it by the work overhead de-
fined in eq. (29). This compensated curve draws a dif-

ferent conclusion than the initial one. For example, in

FP32, the raw FLOP/s is highest for nine fused iter-

ations. In the compensated model, the best fusion is

lower: around three iterations.

This difference highlight a drawback of the analysis

based on the roofline model only. When the total num-

ber of operations changes from one implementation to

another, the achieved FLOP/s is not comparable. In

our case, fig. 11 is more straightforward: it shows the

execution time gain for different numbers of fused iter-

ations.

The maximum performance is achieved with seven

fused iterations in FP32 and five in FP64. These results

tend to confirm the analysis of the compensated roofline

model made on fig. 10.

We now choose a value of three fused iterations in

FP32 for two reasons: it achieves good speedup both in

FP32 and FP64 precisions, and it is more convenient

to have a total number of iterations that is a multiple
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of three, than seven, for example. On fig. 9, the time

spend for Jacobi iterations is almost divided by three

on Titan V and about by two on Jetson Xavier. The

additional speedup, especially on Titan V, is explained

by reducing kernel launch overhead.

Batched convolutions: after optimizing the Ja-

cobi solver, fig. 9 shows that on Jetson Xavier, almost

half of the runtime is spent doing convolutions. As ex-

plained in section 4.1, convolutions have been re-expressed

to be run in a single CUDA function. Instead of launch-

ing a kernel per convolution, the batch computation

reduces the overhead and lets the convolution filter’s

coefficients in the CUDA thread registers. This makes

the runtime of convolutions decrease by a factor of two

on Xavier.

Ours (Jetson Xavier)

Moussu [16] CPU GPU (baseline) GPU (optimized)
FPS 4.2∗ 0.4 4.5 15.0

Table 2: Throughput of 3000 Jacobi iterations. Same

conditions as [16]. ∗scaled results.

To show the benefits of these optimizations, we com-

pare our results with another Jacobi GPU implemen-

tation in table 2. This reference [16] was measured on

a Geforce 9400 GT, released in 2008. We scaled that

result to account for the 14.3× larger memory band-

width in the Jetson Xavier. We chose to multiply ac-

cording to this metric as memory requests are the bot-

tleneck of non-optimized Jacobi implementations (see

fig. 10). Our original GPU implementation is then on-

par with results extrapolated from Moussu. The opti-

mized version, however, benefits from a large speed-up

(3.5× vs. [16]) thanks to the buffer reuse and iteration

fusion strategies. For reference, we included a CPU ver-

sion in the comparison. This implementation leverages

OpenMP parallelization but under-performs compared

to GPU versions.

4.3 Multi-level analysis

As detailed in [4], multi-level processing aims at finding

optical flows at different problem scales. The technique

helps in finding large displacements and iterates quickly

on higher levels due to the reduced problem size. Conse-

quently, we measure the actual performance of our GPU

implementation on different image sizes. Those results

should guide decisions back at the algorithm level to

set the number of iterations per level that fits a given

time frame.

Table 3 presents results for the Jacobi solver on var-

ious image sizes. Below 320× 256, there is not enough

Size 20 × 16 40 × 32 80 × 64 160 × 128
Time (ms) 6.34 6.39 10.4 13.1

Size 320 × 256 640 × 512 1280 × 1024 2560 × 2048
Time (ms) 26.3 83.6 341 1,360

Table 3: Time to perform 1000 Jacobi iterations on Jet-

son Xavier vs. image size.

Iterations per level:
{75, 75, 75, 75}

Iterations per level:
{60, 120, 180, 240}

Fig. 12: Results on 640 × 512 images at 60 FPS. Doing

more iterations at higher levels converges faster.

processing to saturate the GPU, so the time does not

vary vastly between different sizes. However, with larger

dimensions we see that the processing time grows lin-

early with the number of pixels in the image. We can

now use this knowledge to choose the number of itera-

tions per scale of the problem.

On fig. 12, the optical flow for two choices of pa-

rameters is displayed. The left-hand flow was obtained

by doing 75 iterations on each scale, from the 640×512

level, to the upper ones: 320×256, 160×128, and 80×64.

The right-hand flow sets 60 iterations at the highest-

resolution level and 120, 180, and 240 iterations at the

lower ones. While both configurations run at the same

speed, 60 FPS on the Jetson Xavier with 640 × 512
images, the configuration using more iterations on the

higher levels yields a smoother flow. It has converged

more on less textured regions and seems better for prac-

tical use.

5 Conclusion

This article has shown the interest in combining anal-

yses at the algorithm and implementation levels to ob-

tain the best performance.

Initially, we pre-selected candidate GPU solvers for

a subsequent GPU optimization. This first analysis also

provided an understanding of the hyper-parameters on

the convergence speed. Then, the multi-scale CLG algo-

rithm was ported on the embedded Jetson AGX Xavier

GPU. Several optimizations have enhanced the algo-

rithm’s run time: re-utilization of intermediate Jacobi

buffers, solver iteration fusion, and batching of convo-
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lution. Overall, these techniques decreased the runtime

of the algorithm by more than 2×.

The multi-scale behavior of the method has also

been studied. Results have shown that higher levels are

processed faster but that the speedup plateaus for im-

ages smaller than 80 × 64. This result allowed us to

choose the right parameters for the best possible con-

vergence within a limited time frame.

In the end, our GPU implementation of the CLG

optical flow method runs at 60 frames per second on

640×512 images with a 30W power budget. Tuning the

number of iterations per level set allowed us to produce

a smoother flow in the same time frame. Overall, this

implementation opens up the use of CLG optical flow

for embedded applications like drones or robotics.

Further work could analyze the performance of multi-

grid solvers and their optimal configuration on GPUs

or apply this optimization method to other optical flow

methods.
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