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ABSTRACT

In this work, we introduce an original strategy to apply the
Compressed Sensing (CS) framework to a super-resolution
Structured Illumination Microscopy (SIM) technique. We
first define a framework for direct domain CS, that exploits
the sparsity of fluorescence microscopy images in the Fourier
domain. We then propose an application of this method
to a fast 4-images SIM technique, which allows to recon-
struct super-resolved fluorescence microscopy images using
only 25% of the camera pixels for each acquisition.

Index Terms— Compressed Sensing, Structured Illu-
mination Microscopy, Fluorescence microscopy.

1. INTRODUCTION

Over the last years, fluorescence microscopy has become a
fundamental tool for modern experimental biology. Several
techniques have been proposed to overcome the limitation
related to the diffraction nature of the light [1]. Among
those, super-resolution far-field microscopy techniques in-
clude STED, PALM/STORM, and Structured Illumination
Microscopy (SIM), introduced by Gustaffson in 2000 [2]. SIM
is one of the less invasive super-resolution imaging technique
for biological samples. It can be seen as an extension of wide-
field microscopy where the biological sample is illuminated
with a series of sinusoidal patterns of high spatial frequen-
cies. Such illuminations inject high frequencies inside the
optical transfer function of the microscope objective through
the appearance of Moiré fringes as a result of interferences
between the illumination patterns and the biological sample
details.

Although SIM has already demonstrated its capability
to achieve fluorescence imaging with enhanced spatial res-
olution, it has not been widely used yet for biological ap-
plication because of the difficulty to reconstruct the images.
Fast dynamic studies of living samples are still limited by
the number of required raw image acquisitions (9 images at
least) to obtain one high-resolution image. Moreover, with
the rapid development of new CMOS-based scientific cameras
with higher pixel density, both fast transfer and computation
of huge amount of data could become a bottleneck for the
diffusion of this new super-resolution strategies.

In this work, we propose an original method, based on the
Compressed Sensing (CS) theory, to overcome these draw-
backs by reducing the amount of acquired data needed to
reconstruct a super-resolved SIM image by a factor up to 4,
without loosing in resolution or signal-to-noise ratio.

2. DIRECT DOMAIN COMPRESSED SENSING

2.1. Compressed Sensing Theory

Compressed Sensing (CS) is a mathematical theory originally
developed in the works of Candès [3] and Donoho [4] in 2006.
This theory states that a sparse signal can be recovered from a
drastically low amount of randomly sampled data. In the case
of image acquisition, we want to reconstruct the true image
x ∈ RN from a given observation y = Φx ∈ RM (with M <<
N), where Φ ∈ RM×N denotes the measurement operator.
The image x has a sparse representation with respect to a
known dictionary Ψ ∈ RN×L. It means that there is a set of
coefficients s ∈ RL with only S non-zero values (S << N),
such that x = Ψs. The CS theory shows that, under some
constraints [3], it is possible to recover an estimator x̂CS of the
true image x from the observation y by solving the following
optimization problem:

x̂CS = arg min
x∈RN

‖Ψ†x‖1 such that Φx = y (1)

where Ψ† is the pseudo inverse of the operator Ψ.

2.2. Fourier-domain sparsity

The notion of sparsity is central in the CS theory, but natural
or biological images are seldom sparse. On the other hand,
in the context of microscopy, all images share one common
property: they are the results of a convolution between the
true illuminated scene and the point spread function (PSF)
of the microscope. This leads to a loss of resolution, which we
can model as a low-pass filter in the Fourier domain. It can be
modeled via setting to zero most of the Fourier coefficients of
the image, which corresponds to a sparse Fourier transform,
with a degree of sparsity directly proportional to the spatial
support of the PSF of the system.

Most CS applications consider random sampling in the
Fourier domain to reconstruct an image that is sparse (or



more realistically compressible) in the spatial domain (or
some transform domain). We propose in this work to fol-
low the opposite approach, by enforcing sparsity in Fourier
domain and sampling sparsely in spatial domain.

Our results demonstrate that it is possible to recover a
SIM image x from a limited collection y of camera pixels,
with a controlled reconstruction error (see [5]).

We define the operators Φ and Ψ as follows. First, the
sensing operator Φ ∈ {0, 1}M×N is a direct-domain selection
matrix, where M is the number of pixels selected among the
N pixels of the camera. The sampling rate is defined as τ =
M
N
∈ [0, 1]. The sparsifying transform is simply defined as

the Fourier transform operator F .
The CS optimization problem (1) is written as:

x̂CS = arg min
x∈RN

‖F(x)‖1 such that Φx = y (2)

which we solve using the NESTA algorithm [6].

3. FAST STRUCTURED ILLUMINATION
MICROSCOPY

SIM is based on the illumination of a given biological sample
with a series of structured patterns, to observe the resulting
interferences through a microscope, and reconstruct a super-
resolved image from these observations. In the context of
linear SIM, the illuminations patterns are sinusoidal modula-
tions, that can be written, for each pixel location (p, q) as:

I(p, q) = I0 (1 + α cos(2π(kpp+ kqq + ϕ)))

where I0 is the mean intensity of the illumination, α is the
modulation depth, (kp, kq) encodes its orientation and fre-
quency, and ϕ its phase.

In standard SIM implementation [2], K = 9 illuminated
observations are made to reconstruct a single SIM image. In
[7], an alternative approach to the standard SIM image recon-
struction was proposed, based on a Bayesian inverse problem
formulation strategy that only requires K = 4 raw images
to generate a super-resolved image. In the following, we will
refer to this technique as SIM4i.

3.1. SIM reconstruction

Mathematically, the acquisition of each raw image gk ∈ RN ,
k = [1, 2, .,K] can be modeled as follows:

gk = HIkf + nk (3)

where f ∈ RN is the high-resolution image to recover, H
represents the PSF of the microscope, Ik is the illumination
pattern of the observation k, and nk is the noise term cor-
rupting the observation k. The illumination pattern does not
change the low-pass effect of the PSF, but the frequency of
the modulation needs to fall within the support of the PSF
spectrum.

Then, if we collect the K raw images in one vector g =
[g1, . . . , gK ], the general model can be written:

g = H̃IRf + n (4)

where H̃ and I are block diagonal matrices containing respec-
tively H and Ik in each block, R is a replication matrix and
n is the overall noise term.

The SIM4i technique solves an inverse problem that is
written [7]:

f̂SIM = arg min
f∈RN

‖g − H̃IRf‖2
2 + λ‖Df‖2

2 (5)

where λ is a hyperparameter determined through Bayesian
estimation, and Df is the Hessian of the image f .

3.2. CS-SIM

In this work, we propose to acquire only a subset of M ran-
domly chosen camera pixels of each raw observation. Using
the notations defined above, the acquisition model (3) be-
comes:

gk = Φ (HIkf + nk)
Now, we solve the optimization problem (2), to reconstruct
an estimator ĝk,CS from the raw observation gk. Finally,
collecting the K estimators ĝk,CS into a vector ĝCS , we can
apply the SIM4i inverse problem (5), and write the CS-SIM
technique as:

f̂CS−SIM = arg min
f∈RN

‖ĝCS − H̃IRf‖2
2 + λ‖Df‖2

2 (6)

4. EXPERIMENTAL RESULTS

4.1. Dataset

We tested the CS-SIM algorithm on two images. The first
one is a synthetic target image, designed for testing super-
resolution methods [8]. We display in Fig 1-2 only part of
the original image (matrix size = 400× 400 pixels, pixel size
= 25nm) for better clarity. The second image is a fluores-
cence microscopy image of Hela cells (matrix size = 400×400
pixels, pixel size = 100nm), acquired in our unit at Pasteur
Institute. Both images serve as ground-truth high-resolution
(HR), which we degrade, to simulate widefield observations,
with a smoothing PSF modeled as an Airy disc with central
disc diameter of 10 pixels.

We simulated CS-SIM acquisition on both images. As in
[7], four modulation grids were used at angles

[
0, 0, π3 ,

2π
3

]
,

phases ϕ =
[
0, 2π

3 , 0, 0
]
, and frequency adapted to the size of

the PSF. The noise term is chosen to be white Gaussian with
standard deviation σ = 1 . Finally, the sensing operator Φ is
a uniform random selection of either τ = 25% or τ = 50% of
the total number of pixels in each observation (i.e. camera
captors).

4.2. Qualitative results

The two images described in Sec.4.1 are used to evaluate the
quality of our CS-reconstruction and CS-SIM techniques.
We display in Fig 1-2 visual illustrations for some CS-
reconstruction and CS-SIM results, with τ = 25% (that
corresponds to our goal for fast-SIM imaging) and τ = 50%.

4.2.1. CS reconstructions

On Fig.1, we display the HR images and their widefield obser-
vation, along with the Fourier Transforms. This visualization



confirms the validity of Fourier-domain sparsity, with the ma-
jority of the high-frequency coefficients (outside the central
disc) encoding the noise.

The third row displays, for each HR image x, the orig-
inal subsampled data y with a sampling rate τ = 25%, as
well as its Fourier Transform F(y). We also display the CS-
reconstruction results of the widefield image for τ = 25%,
that is our target sampling rate, and τ = 50%, which shows
some visual improvement compared to τ = 25%.

Comparison of the Fourier transform of the CS recon-
struction and the original widefield image shows artifacts
along the central vertical axis, which falls into the standard
level of noise. Hence, these artifacts are negligible on the
direct domain images.
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Fig. 1: High-resolution (HR), widefield observations and
CS-reconstructions (with τ = 25% or 50%) of the wide-
field data on the Synthetic and Hela images, along with
their Fourier Transforms (F.T.), shown in log-values for
visualization. Third row represents the spatial random
sampling collected on the camera, along with its Fourier
Transform.

4.2.2. CS-SIM

After applying CS-reconstruction on each of the K = 4 mod-
ulated observations, we display in Fig.2-3 the CS-SIM recon-
struction results for both test images, with τ = 25% and
τ = 50%. We clearly see the super-resolution effect of SIM,
increasing the spatial extent of the Fourier spectrum of the
reconstructed image. The support size is the same for both
τ = 25% and τ = 50%, enabling to maintain the resolution
gain of a factor 2.
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Fig. 2: SIM4i and CS-SIM reconstructions (τ = 25% or
50%) of the Synthetic and Hela images, along with their
Fourier Transforms (F.T.).

We provide in Fig.3 zoomed views of both series of results,
enabling visual assessment of the quality of the reconstruc-
tion at the pixel level. We can see that resolution is already
greatly improved with τ = 25%, and almost optimal (with
respect to the original SIM4i image) for τ = 50%. A segment
was selected in both image sets and intensity profiles are dis-
played, to illustrate contrast improvement in an intermediate
range between widefield observation and reference HR image.

The two zoomed areas were chosen to illustrate the power
of resolution improvement in separating adjacent structures
such as two high-contrast spots or three low-contrast linear
shapes. The HR images show separate structures, while the
widefield images merge them and distort their shapes. We
see that the original SIM4i technique and CS-SIM recon-
structions are able to recover separate objects, with better
estimates of the intensity levels in low-contrast areas.

4.3. Quantitative results

To quantify the visual quality of the reconstructed images,
three metrics are used: Mean Square Error (MSE), Struc-
tural Similarity Index Measure (SSIM) [9], and normalized
Fourier Spectrum Analysis (FSA) [10]. The FSA computes
the average energy along concentric circles of radius inversely
proportional to resolution (see Fig 4). Both MSE and SSIM
measurements use a reference image for comparison, which is
supposed to be the ideal image. Accordingly, we used as our
reference the widefield images to evaluate CS-reconstructions,
and the HR images to evaluate CS-SIM reconstructions. All
measures, tested versus the sampling rate value τ , are re-
ported in Fig.4

The normalized FSA measures show that our CS-SIM
method recovers the Fourier information as efficiently as the
original SIM4i method, with τ as low as 25%.

For both MSE and SSIM, CS-reconstruction measures im-
prove quite fast with the sampling rate. Even though the
error is never exactly zero, we notice that the CS-SIM re-
construction provides strong improvement in this direction.
Indeed, in terms of MSE, the CS-SIM reconstruction is al-
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Fig. 3: Magnified view (patch size = 50 × 50 pixels) of the CS-SIM reconstructions from Fig.2 on structural details for
the Synthetic and Hela images. The last column displays intensity profile values along the red dotted segments shown
on the HR images. Unit of x axis is in µm.

ready almost exact for a sampling rate of 40%. The SSIM
keeps improving as the sampling rate grows, which visually
corresponds to elimination of small artifacts around the edges
of tiny objects inside the images.
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Fig. 4: Quantitative evaluations of the CS reconstructions
versus widefield images and the CS-SIM reconstructions
versus HR images. For each technique, we report MSE
(in blue) and SSIM (in red) measurements with respect to
the sampling rate used by the CS. On the third column,
we report the normalized FSA measures for the different
reconstructions.

5. CONCLUSION

In this work, we have explored a Compressed Sensing based
approach for Structured Illumination Microscopy imaging,
and provided a new framework for fast super-resolution mi-
croscopy. Via simulations of SIM acquisitions we have shown
that CS-SIM allows SIM reconstruction of equal quality but
with only 25% of the camera pixels sampled and stored dur-
ing acquisition of each of the modulated images. This paves
the way toward new opportunities such as live-SIM. In the
near future, we will apply this method to video sequences,
and as soon as scientific cameras with random selection of

pixels are available, we will implement our method on a real
experimental set-up.
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