Optical sectioning with Structured Illumination Microscopy for
retinal imaging: inverse problem approach
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Résumé — La microscopie par illumination structurée (ou SIM en Anglais) est une technique d’imagerie permettant d’obtenir super-résolution
et sectionnement optique en microscopie de fluorescence. L’échantillon objet est éclairé par des motifs de franges sinusoidales avec différentes
orientations et déphasages. Ceci a pour effet d’introduire par repliement de spectre des informations a hautes fréquences spatiales de 1’objet
a Dintérieur du support de la fonction de transfert. L'image résultante est traitée avec des logiciels de reconstruction dédiés qui permettent
de récupérer des fréquences spatiales au-dela de la coupure de I'instrument et, simultanément, d’enlever la lumiere provenant des tranches
défocalisées si 1’objet est volumique (ce qu’on appelle sectionnement optique).

Malheureusement, alors que pour les échantillons statiques, les déphasages des sinusoides peuvent étre définis par 1’utilisateur, fournissant ainsi
des solutions analytiques, ce n’est pas possible pour des échantillons in-vivo, en particulier pour des images rétiniennes, du fait des mouvements
oculaires incontrdlés.

L’ objectif de cette communication est de démontrer que la SIM peut étre appliquée a 1’imagerie rétinienne in-vivo afin d’obtenir a la fois sec-
tionnement optique et super-résolution a partir d’images grand champ corrigées par optique adaptative. Nous introduisons une nouvelle approche,
dans un cadre bayésien, qui permet de manigre simple d’atteindre un sectionnement optique maximal. A cette fin, une image conventionnelle est
enregistrée, recalée et soustraite de chacune des observations SIM basse résolution, de sorte que les données différentielles résultantes contiennent
uniquement des informations sur la tranche focalisée de 1’objet. Parce que notre méthode ne modélise pas explicitement une observation 3D mais
conserve la simplicité d’un modele 2D, elle est rapide et facile & mettre en ceuvre dans la pratique. Nous montrons des résultats de simulations
qui prouvent la validité de notre approche.

Abstract — Structured Illumination Microscopy (SIM) is an imaging technique for obtaining super-resolution and optical sectioning (OS) in
wide-field fluorescence microscopy. The object sample is illuminated by sinusoidal fringe patterns at different orientations and phase shifts. This
has the effect of introducing high frequency information of the object into the support of the transfer function by aliasing. The resulting image is
processed with dedicated reconstruction softwares which allow recovering high frequencies beyond the instrument cut-off and, simultaneously,
removing the light coming from the out-of-focus slices of a 3D volume (which is called optical sectioning).

Unfortunately, whereas for static samples the phase shifts of the sinusoids can be set by the user thus providing analytical solutions, this is not
possible for in-vivo samples, and in particular for retinal images, due to the uncontrolled eye movements.

The aim of this communication is to demonstrate that SIM can be applied to in-vivo retinal imaging in order to obtain both OS and super-
resolution from flood-illuminated and adaptive-optics corrected observations. We introduce a new approach, within the Bayesian framework,
which allows in a simple way to achieve maximal OS. For that purpose, a conventional wide-field image is registered and subtracted with respect
to each one of the low resolution SIM observations, hence, the resulting differential data only contains information on the in-focus slice of the
object. Because our method does not model explicitly a 3D observation but keeps the simplicity of a 2D model, it is fast and easy to implement
in practice. We show results from simulations that prove the validity of our approach.

1 Model of Structured Illumination Mi-  lume. This is achieved by illuminating the sample of interest
. with a light pattern, usually a sinusoid characterized by a mo-

Croscopy 1mages dulation frequency, which has the effect of shifting the object
frequency content. In other words, the key idea of SIM is to
inject object high frequencies into the support of the optical
transfer function (OTF) of the instrument, below the diffrac-

Structured illumination microscopy (SIM) is a wide-field fluo-
rescence microscopy method which allows increasing both the
lateral [1] and the axial [2] resolution of an observed 3D vo-



tion cut-off frequency f., by means of amplitude modulation
before the convolution with the PSF, i.e., SIM introduces alia-
sing through modulation. The illumination modulation pattern
is expressed as :

m(z,y) = 1+m'(z,y) = 1+cos (2n(kyz + kyy + ¢)), (1)

where (z,y) are spatial 2D coordinates, (k;, k) is the modu-
lation frequency of the sinusoid, and ¢ is the relative phase
shift of the sinusoid w.r.t. the sample. Therefore, three deltas in
the Fourier domain are introduced by the pattern and placed on
the frequencies (0,0), (ks, k) and (—k,, —k,,). If a 2D object
o(z, y), with continuous Fourier transform 6( f,, f,,), is multi-
plied by the pattern expressed by Equation (1), and observed
with a microscope characterized by a PSF h(zx,y), correspon-
ding to an OTF A( f,, fy), and if we omit the presence of noise,
then an image is formed both in Fourier and direct space as :

Z(I7y) = h<x’y) * (m('r’y) : O(Z‘,y)), 2

and

i(Fer fy) = BlFer £,) (652 )
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+0(fr + Kz, Ty + ky)6_2iw¢)7

where * represents the convolution operator. This is an expres-
sion with three unknowns, i.e., the three replicated objects pla-
ced on frequencies (0, 0), (k, ky) and (—k,, —k,), hence, two
more equations are needed to make this system solvable. In the
traditional SIM approach, assuming the sample is fixed, this
can be achieved by modifying the sinusoid phase ¢ to known
values 0, 120 and 240 degrees, yielding an analytical solution.
In the case of retinal imaging, the natural motion of the eye
provides those relative phase shifts, keeping the pattern posi-
tion fixed, but more than 3 images (i.e., phases shifts) must be
acquired since it is unlikely that the random trembling of the
eye produces the aforementioned values. This must be repea-
ted at least for three orientations of the sinusoid at 0, 60 and
120 degrees to have a good coverage of the whole 2D Fourier
domain.

Figure 1 shows graphically the concept of SIM. One can
see that the first consequence of multiplying the sample by a
sinusoidal pattern is shifting object high frequencies, usually
beyond the instrument cut-off so they are unobservable, into the
OTF support. Therefore, with convenient post-processing tech-
niques they can be disentangled thus allowing us to increase the
recovered object resolution up to twice the cut-off frequency.

Equation (2) can be extended along a 3D volume by consi-
dering a finite number of thin slices, each of them blurred with
PSFs which increase their defocus level with the axial distance :

il(xvy) = Z hz(mvy) * (ml(‘r’y) : (OZ(CE?y) * Sl(iU,y))),

z2=—7
4
where z indexes the slice along the 3D volume, and the term
si(z,y) has been introduced to model a shift of the object due
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FIGURE 1 — Concept of SIM. (a) if two line patterns are superposed (one
from the object, one being the illumination pattern), their product contains co-
arser fringes. This visible Moiré effect shows the aliasing. (b) Spatial frequency
support of OTF. (c) A sinusoidal pattern plus a constant translates into 3 Diracs
in the Fourier domain. Spatial frequencies of the original signal will be now
centered and replicated around these positions. (d) This means that high fre-
quencies of the object lie now inside the OTF support, superimposed with the
original signal. (e) Different orientations of the pattern will allow an isotropic
frequency coverage. After Ref. [1].

to, for instance, the natural motion of the eye, i.e., s;(x,y) =
0(x—xy, y—y1). Therefore, due to s;(z, y) we can keep the illu-
mination pattern fixed setting ¢ = 0 in Equation (1). Bearing
in mind that m(xz,y) = 1 + m/(z,y) and since, for |z| suf-
ficiently large, the corresponding defocused OTF H. (f, fy)
is very small around the modulation frequency (k, k) of the
pattern m(x, y) (as can be seen in Fig. 2), Equation (4) can be
approximated as :

Z

u(z,y) ~ (

z=—

+ holw,y) + (mi(a.y) - (oolw,9) = s1(a.9))

icv(z,y) *si(z,y) +igos(z,y),

he(x,y) * 0, (z, y)) * 51(x,y)
“ 5)

where we have defined icy (z,y) as one conventional wide-
field observation, which is shifted to a random position by s;,
and i; 05 as the aliased replica; hy and og are, respectively,
the PSF and the object at the focused slice z = 0. Looking
at Equation (5) one can see that the conventional image icy
contains contributions from all object slices whereas ;05 only
contains information about the in-focus slice of the object.

Figure 2 shows graphically how optical sectioning (OS) is
obtained. Five plots representing the OTF and object spectra,
at five different slices along the volume, are depicted. The left-
most panel is in focus while defocus increases from left to right.
In that panel, the conventional image is centered at the zero fre-
quency while the two aliased replica, attenuated by the OTF, are
placed at half the cut-off frequency. The reader can notice how
the two replica of the original signal are canceled by the first
zero of the defocused OTF in the fourth panel, thus achieving
OS.
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FIGURE 2 — Spectrum of the image of a sinusoidally illuminated object
(blue) and corresponding modulation transfer functions of an incoherent ima-
ging system (red) for different axial distances. After Ref. [3].



2 Proposed method for OS with retinal
images

In this section we show a new approach, within the Baye-
sian framework [4], to obtain OS from a set of low resolu-
tion (LR) SIM images in the context of retinal observations.
Authors in reference [5] propose a 3D image model in order
to explicitly remove the out-of-focus content from the plane
of interest. This approach has the drawback of increasing the
number of unknowns to be estimated since all the 27 +1 slices
along the 3D volume must be calculated, hence, it is compu-
tationally costly and the minimization is prone to instabilities.
Unlike [5], our model is still 2D and it is based on the fact that
most of the out-of-focus content lies in the conventional image
icv (x,y), whereas the aliased signals i;05(x,y) exhibit OS.
Our approach uses this physical insight of the image formation
process ; it consists in performing and modeling the removal
of the conventional image from the LR SIM data to eliminate
the out-of-focus light. The conventional image icy (z,y) can
be recorded independently of i;(x, y), it is then only necessary
to estimate the shifts s;(z,y) between them, in order to sub-
tract the correctly shifted version of iy (z,y) from i;(z,y)
(see Eq. (5)). The recording of icy (z,y) can easily be done
by switching off the modulation over the sample—this is a rea-
listic assumption since the illuminations are usually projected
with semiconductor devices that are able to change their pattern
within milliseconds.

Therefore, using lexicographic matrix notation, the image
model that we propose describes the differential LR SIM data
as:

ijjos = i1 —icv *s; = HiOM';S;00 + 1y, (6)
where vector i; is one LR SIM data image indexed by [ € [1, L],
L is the total number of LR SIM images at all fringe orienta-
tions and phase shifts (at least 3 images and 3 rotations are
needed reaching a minimal number of 9 images), oy is the unk-
nown 2D object to be estimated at slice z = 0, matrix Hy is a
Toeplitz-Block-Toeplitz matrix representing convolution with
the discrete 2-D focused PSF, matrix M’; is a diagonal matrix
where the diagonal elements correspond with the modulation
patterns m;(x,y), which are fixed for all the image data at the
same pattern rotation, matrix S; represents the bidirectional ob-
ject shift (X and Y coordinates) w.r.t. the pattern for observa-
tion [/, and n; models the noise. In this model, the illumination
patterns, at all rotations, are considered to be known whereas
the object shifts, represented by S;, must be estimated.

The cost function to be minimized adopts the following ex-
pression when homogeneous white Gaussian noise of the same
variance o is considered for all images at all fringe rotations :

L

1.
F= Zﬁ”luos —HoM'1Si00|” + R(00).  (7)
1

There is no analytical solution for Equation (7) under po-
sitivity constraint, so the minimization must be done with nu-
merical methods. Here, we have used a Variable Metric with
Limited Memory and Bounds called VMLM-B [6].

We have assumed that a conventional observation of the
sample can be recorded independently removing the illumina-
tion pattern so an image icy is available. Before subtracting the
estimated conventional image to the LR SIM ones they must be
registered, with the difficulty that the latter ones are modulated
when the conventional image is not. Here, we use the initializa-
tion of the method developed by [7] for a similar image model,
which begins by exploring all possible shifts on a one-pixel-
pitch grid (making use of correlation products in the Fourier
domain) in order to avoid getting stuck in local minima. Then
we perform a least square estimation w.r.t. the object shifts S;
in order to improve the estimation at the sub-pixel level. Once
the conventional image icy is registered with each one of the
LR SIM data i;, the former is subtracted from the latter in order
to create the new differential data i; 05, which contains only
the aliased information (see Fig. 3).

Then, the object is estimated by a minimization of the MAP
metric of Equation (7) with a regularization model R(op) which
assumes a stationary Gaussian prior probability distribution des-
cribed by a mean object 0,,, and a 3-parameter PSD. These 3
parameters can be estimated by maximum likelihood prior to
the image reconstruction, as in [8]. Positivity was also impo-
sed.

3 Simulations and results

To test the validity of this approach, ground truth images
shown in Figure 3 (top row, left and middle panel) were padded
with zeros and shifted a random number of pixels around their
central positions. These images were used, in our simulations,
as the in- and the out-of-focus slices within a 3D volume. Each
one of the resulting images was multiplied by fringe patterns
for three different rotations at 0, 60 and 120 degrees. Different
numbers of images per rotation were considered, e.g., 9, 18,
36 and 72. The modulation frequency was set to approximately
half of the instrument cut-off, i.e., (ky, ky) ~ (fe/2, fc/2).
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FIGURE 3 — Top row. Left panel : in-focus ground truth object. Middle
panel : out-of-focus ground truth object. Right panel : conventional observation
icy . Bottom row. Left panel : one illumination pattern. Middle panel : low
resolution SIM image i;. Right panel : differential data i;) o 5.

Then, the in-focus object was degraded by an unaberrated



focused PSF that was Nyquist sampled, while the out-of-focus
one was blurred with a defocused PSF with a defocus of 1.15
radian RMS. Finally, the blurred images were summed and cor-
rupted with white Gaussian noise ; two different levels of noise
were evaluated with variance corresponding to an average of
103 and 10* photons per pixel. Figure 3 depicts the ground
truth objects, as well as the conventional observation icy, a
LR SIM observation i; and the differential data ij 0.
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FIGURE 4 — Top row : 10* photons per pixel reconstructions (SNR =
100). Bottom row : 102 photons per pixel (SN R = 31.6). From left to right :
Wiener reconstruction of the conventional image, optical sectioning recons-
tructions with 9, 18 images per rotation in the case of high SNR, and 18, 36 in
the case of low SNR.

Figure 4 shows results obtained for the two considered le-
vels of noise. One can see that most of the out-of-focus content
has been successfully removed in the reconstructions. We have
observed in some solutions the appearance of a characteristic
dotted pattern that is more severe with the combination of low
SNR and an insufficient number of images per rotation (Fig. 4,
bottom row, middle panel). These residuals are related in the
Fourier domain to the spectra created by the superposition of
the three orientated fringes and they can be canceled by increa-
sing the number of images per rotation.

Finally, in Figure 5 one can observe the efficiency in re-
moving the out-of-focus content for several modulation pat-
tern frequencies. Only when this is set close to the optimal
value (approximately half of the instrument cut-off frequency
or above), is the out-of-focus image mostly removed (Fig. 5,
middle panel).

FIGURE 5 — Left panel : reconstruction with illumination pattern frequency
at ~ f./4. Middle panel : ~ f./2, frequency position to achieve maximal
optical sectioning. Right panel : ~ f./1.33. Reconstructions were made with
36 images per rotation and 10* photons per pixel (SN R = 100).

4 Conclusions

Structured Illumination Microscopy (SIM) is a powerful tool
to achieve optical sectioning (OS) and super-resolution from
wide-field fluorescence microscopy. If the characteristics of the
modulation patterns are not perfectly known, as e.g., in reti-
nal imaging, where the eye motion prevents knowing the shifts
between the object and the fringes, then they must be estima-
ted. In this paper, we have presented a method which keeps the
simplicity of a 2D model for estimating both the object and
its shifts within the Bayesian framework. This method consists
in, firstly, recording and registering a conventional observation
and subtracting it from the low resolution SIM images, and se-
condly, performing a MAP minimization of a cost function to
compute the most likely object compatible with the differen-
tial data and noise statistics. We have shown that this method is
able to perform OS and is computationally efficient.
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