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ABSTRACT

We present in this work a forward model for an Integral Field
Unit (IFU) instrument. Our model is general but primarily de-
veloped for the Mid Resolution Spectrometer of the Mid In-
frared Instrument on board the James Webb Space Telescope
(JWST). It takes a 3D spatio-spectral object as input and pro-
duces a set of 2D projected data with multiple detectors of dif-
ferent characteristics. However, these 2D outputs suffer from
non-stationary spatial and spectral blurring, as well as under-
sampling. Our first contribution is the development of the
forward model in order to simulate data and the second is the
use of this model to reconstruct a full 3D hyperspectral image
from the projected measurements. This problem is ill-posed
and we propose an algorithm based on the regularized least-
square approach with convex edge-preserving regularization.
We show on the simulation that our proposed model and al-
gorithm allow a better reconstruction than the state of the art
algorithm, thanks to spatial and spectral deconvolutions and
denoising.

Index Terms— Hyperspectral – IFU – PSF – Super-
resolution – Dithering – Inverse Problem

1. INTRODUCTION

Hyperspectral imagery, which provides high-resolution spec-
tra at many spatial positions, is widely used in remote sensing
applications for multiple domains, such as astrophysics, med-
ical diagnostics, military, food safety, etc [1, 2]. To obtain
a spatially resolved spectra projected on 2D detectors, Inte-
gral Field Units (IFU) instruments [3] are commonly adopted.
They consist of observing the input through several thin slices
(or microlens) in parallel, where each slice output is spec-
trally diffracted resulting in 2D measurements (one spatial di-
mension and one spectral dimension) [2]. These instruments,
therefore, impose a stage of reconstruction.
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Several challenges arise in hyperspectral reconstruction,
especially for long wavelengths [4, 5]. First the optics, be-
cause of the diffraction, introduces a spatial blurring that de-
pends on the wavelength. The object is more blurred at long
wavelengths than at small wavelengths (see Sec. 2.1). Sec-
ond, the wavelength dispersion introduces a spectral blurring
that is also wavelength-dependent, resulting in non stationary
blurring (see Sec. 2.3). Furthermore, in most cases, the sig-
nal is undersampled at the detector level, with different spa-
tial and spectral sampling steps between detectors. To over-
come undersampling, a so-called “dithering” method [6, 7]
is adopted, consisting of using several pointings with small
spatial shifts (see Sec. 2.4).

The standard algorithm for reconstruction of the 2D+λ
object is based on co-addition methods, where the spatial and
spectral blurring effects are neglected. However, in this work
we are dealing with wide spectral bands in the infrared, which
requires to take into account the blurring effects.

Our approach relies on the development of a new forward
model of the data, that takes into account all the effects men-
tioned above. The reconstruction algorithm is based on regu-
larized least square methods [8], where a data adequacy term
models the instrument effect and a convex edge-preserving
regularization term prevents noise amplification without ex-
cessive penalization of high spatial gradients [9]

2. INSTRUMENT MODEL

2.1. Optic response

The optical system is the first component of the model; it aims
to focus sky images on the focal plane. The spatial resolution
of the focused images is limited by diffraction with a spatial
blur whose Point Spread Function (PSF) width varies linearly
with wavelengths as illustrated in Fig. 1. In its Field of View
(FOV) which has a limited size, the instrument can be con-
sidered spatially stationary. Thus, the result is a spatial con-
volution of the sky x[k, l,m] with (k, l,m) ∈ [1, . . . ,K] ×
[1, . . . , L] × [1, . . .M ], by the PSF of the optics, denoted h,



that depends on the wavelength:

xopt[k, l,m] =
∑
k′,l′

x[k′, l′,m]× h[k − k′, l − l′,m] (1)

= x ∗
k,l

h

For fast computations, the convolution is done using Dis-
crete Fourier Transform, leading to circular spatial convo-
lution [10]. This hypothesis is not an approximation since
spatial edges are properly taken into account.
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Fig. 1. PSF at different wavelengths of JWST/MIRI (loga-
rithmic scale) simulated with the WebbPSF simulator [11].

2.2. Spatial and spectral divisions

A part of the blurred sky image is selected on the focal plane.
This selection is spatially done by a set of slits and spectrally
by wavelength filters [12]. Our model takes into account the
spatial width and length of each slit and the spectral bandpass
of each filter. In that way, the model writes

xi[k, l,m] = xopt[k, l,m]×wi[k, l,m] (2)

where i ∈ I means the spatial + spectral i-selection and wi

the corresponding window with

wi[k, l,m] =

{
1, if (k, l,m) ∈ Si
0, otherwise,

(3)

Si being the support of the selection i. The whole set of se-
lections I takes into account all the slits, combined with the
different spectral channels and the successive pointings. The
light is then directed towards the diffraction gratings.

2.3. Diffraction gratings

Ideally, the gratings output for a monochromatic point source
is a Dirac on the detector whose position depends only on
the wavelength. However, gratings are not perfect and the
response (or the spectral PSF) for a monochromatic point
source [13] at wavelength λ writes

hr(u; s, λ) = B sinc2
(
πW

(
u− c× s

λ
− 1

a

))
(4)
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Fig. 2. (a) Spectral dependence of the grating response,(b)
influence of the spatial position of the input source, s, on the
position of the diffracted light.

where u is a spatial position on the detector (in wavelength
unit), s the spatial position of the input source, and c the cal-
ibration factor which converts the spatial position into wave-
length. The spectral PSF is non-stationary, due to the width of
the cardinal sin which increases linearly with the wavelength
as shown in Fig. 2(a). Moreover, it also depends on the spatial
position s in the slice, which influences the position of the dis-
persed light projected onto the detector as shown in Fig. 2(b).
This degeneracy is one reason to split the light with slits.

The spectral PSF (Eq. 4) is parametrized by W that is
related to the length of the grating, and the grating step a.
The former controls the spectral width, hence the spectral
resolution. We suppose that the instrument is properly cali-
brated, so W can be derived from the spectral resolution in-
strument specification R = λ/∆λ, where ∆λ is the FWHM
of the spectral PSF at wavelength λ. Basic calculus leads to
W ≈ 2.8R/π. The other parameter a controls the position
of the spectral PSF on the detector. In practice a = 1 for
calibrated measurements.

Finally, the gratings are supposed linear and non-invariant,
leading to the output of the gratings gi, for each selection i,
expressed as

gi[k,m
′] =

∑
l∈Li

∑
m∈Mi

xi[k, l,m]× hr,i[m
′; l,m] (5)

where hr,i[m
′; l,m] = hr(um′ ; sl,i, λm,i) is the spectral PSF

(Eq. (4)) for the spatial position sl inside slit i, and the wave-
length λm,i inside slit i.

The 2D output gi depends on a spatial dimension k and
a spectral dimension m′ ∈ [1, . . . ,M ′], with M ′ the number
sampled wavelengths on the detector.

2.4. Spatial sampling and “dithering”

The sampling step of the input x and of the detector are differ-
ent. In particular, the spatial sampling step on the detector and
the slit width are often too large, resulting in under-sampling
and aliasing. To compensate, “dithering” is used. It consists
of using several pointings with small spatial shifts, leading to
a super-resolution problem for data processing. Furthermore,



the spatial sampling depends on the detector and the selec-
tion i (corresponding to a specific wavelength range, slit and
pointing direction).

In the previous section, the spectral sampling step along
the m axis, and the spatial sampling step along the l axis (slit
width) are modeled in Eq. (5). For the other spatial dimen-
sion, k, we suppose that the detector sampling step is a mul-
tiple Ni of the input sampling step. The data then writes

yi[k
′,m′] =

(k′+1)Ni∑
k=k′Ni

gi[k,m
′]. (6)

Concretely, this summation is computed by convolution with
a square impulse response of size Ni, followed by sub-
sampling every Ni. Note that the spatial resolution of the
input is arbitrary chosen to minimize the error on pixel size
of the detector and the exact pointing position.

2.5. Complete model

The instrument model establishes a relationship between
x[k, l,m] and yi[k

′,m′] for a given selection i

yi[k
′,m′] =

(k′+1)Ni∑
k=k′Ni

(∑
l∈Li

∑
m∈Mi

[
x[k, l,m] ∗

k,l
h[k, l,m]

]
wi[k, l,m]× hr,i[m

′; l,m]

)
. (7)

The model is linear but non-stationary, and can be sum-
marized as yi = Hix. Then, all data are concatenated
giving y = Hx with yt = [yt

1,y
t
2, ...,y

t
I ] and Ht =

[Ht
1,H

t
2, . . . ,H

t
I ] the full data model. This model takes into

account several instrument effects:

• the spatial blurring depending on the wavelength,

• the different spectral channels with different number of
slits of different sizes,

• the spectral blurring with varying grating parameters,

• the spatial and spectral sampling, with steps specific
for each detector and different than the sampling steps
of the input sky.

3. RECONSTRUCTION

3.1. Standard method

The state of the art algorithm for hyperspectral image recon-
struction is based on co-addition (after preprocessing step of
raw measures), which is the shift-and-add Super-Resolution

algorithm (SR) [7, 14]. This method corresponds to the min-
imization of the least-square criterion

x̂coadd = arg min
x

‖y − Sx‖2

= (StS)−1
∑
i

St
iyi

where S, a sub-sampling matrix, is equivalent to our model of
Eq. (7), but with Dirac as spatial and spectral PSF, and with-
out any spectral upsampling. In that case, St

i is the upsam-
pling spatial matrix for a given pointing and slit and (StS)−1

is a diagonal normalization matrix that counts the number of
time a pixel is measured. This algorithm works with data that
have identical spectral sampling step.

3.2. Proposed method

Our approach relies on (1) the complete forward model
Eq. (7) for different channels, sampling steps, pointings,
spatial and spectral blurring, and (2) the optimization of
a mixed criterion that combines a data fidelity term and a
regularization term. The reconstruction approach with the
least-square method described in Sec. 3.1 suffers from the
ill-conditioning coming from the blurring effects. Therefore,
we enforce a regularization term based on edge-preserving
convex potential [15]. Thus, the reconstructed cube x̂ is
expressed as

x̂ = arg min
x

‖y −Hx‖2+

µspec

∑
w∈W

φ(dt
wx;Tspec) + µspat

∑
i∈I

φ(dt
ix;Tspat) (8)

where dw computes the first order differences along the
spectral dimension, di the first order differences in row and
column along the spatial dimension, µspec and µspat the spec-
tral and spatial regularization parameters respectively, and
φ(δ, T ) the Huber potential defined as

φ(δ, T ) =

{
δ2, if |δ| ≤ T .
2T |δ| − T 2 otherwise.

(9)

Huber potential is continuously differentiable, with a quadratic
behavior below the threshold T to enforce denoising, and a
linear behavior above the threshold to prevent excessive pe-
nalization at high gradient values and to preserve edges. The
closed form expression of the minimizer x̂ is not explicit and
cannot be directly calculated. Therefore, we rely on the fast
semi-quadratic (or majorize-minimize) algorithm based on
the Geman and Yang structure to find the solution [9].

4. SETUP AND RESULTS

4.1. Setup for the experiment

Our instrument model is based on the Mid Resolution Spec-
trometer (MRS) of the Mid-Infrared Instrument (MIRI) [12]



on board the JWST. We reproduce hyperspectral data with our
instrument model for a given “Urban” [16] object represented
on a 3D Cartesian grid with K ×L×M = 120× 120× 2000
pixels. This object is assumed to be spatially sampled with
a step size ∆k = ∆l = 0.1 arcsec/pixel. The spectral di-
mension is uniformly sampled from 7.4µm to 18µm, and is
divided into two spectral channels observed simultaneously.
Furthermore, the IFU divides the l−axis into slices with a
width equal to 3 × ∆l for the first channel and 4 × ∆l for
second channel. The light in each slice is projected onto dif-
ferent detectors with a pixel step size equal to 2 × ∆k and
3×∆k for to the first and second channels, respectively. We
take a dithering pattern of 8 pointing directions. For a single
pointing, each diffracted slice is a 2D spatio-spectral image
of size 21× 250 pixels and 19× 250 for the first channel and
the second channel, respectively. The set of 2D output is then
corrupted with an additive zero-mean white Gaussian noise,
and with SNR= 30 dB .

The proposed reconstruction is computed using Eq. 8.
Hyperparameters are set to Tspat = 0.5, Tspec = 2.5, µspat =
0.5, µspec = 1.5 by minimizing the reconstruction error
E(x̂) = ‖x∗ − x̂‖2 where x∗ is the true sky. The algorithm
is implemented in python with the numpy toolbox.

4.2. Results and discussion

Fig. 3 shows a spatial reconstruction for λ = 9µm and λ =
15µm. These wavelengths belong to two different spectral
channels. We have reconstructed a unique cube, with a FOV
of 6.4×7.2 arcsec for the first channel and 7.8×9.3 arcsec for
the second one. The standard and proposed algorithms show
a better reconstruction at small wavelength (first column) than
at long wavelength (second column) since the object is spa-
tially less blurred.

The standard method reconstructs large scale patterns, but
fails to reproduce small scale structures because the blurring
is not taken into account; the relative error is Estandard = 7%.
With the proposed approach, the spatial resolution is signifi-
cantly improved, small scale details are detected, and the error
is reduced to Eproposed = 3.5%. Fig. 4 compares the spectra
of two single pixels for the input, the standard reconstruction,
and the proposed reconstruction. We see that the proposed al-
gorithm minimizes the spectral mixing via deconvolution and
allows denoising.

5. CONCLUSION

We have developed a forward model of IFU instruments, es-
tablishing a relationship between a 3D spatio-spectral input
and a set of 2D spatio-spectral outputs projected onto differ-
ent detectors. This model takes into account (1) the spatial
and spectral blurring that depends on the wavelength, (2) the
different spectral channels with a different number of slits of
different sizes, and (3) the irregular under-sampling. The loss
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Fig. 3. Top: observed input image at λ = 9µm and λ =
15µm. Middle: standard reconstruction at the same wave-
lengths, Bottom: proposed reconstruction x̂.
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Fig. 4. Comparison between the spectra of two chosen pixels
for the observed input, the standard and the proposed recon-
struction.

of spatial information is compensated by several acquisitions
with small spatial shifts (“dithering” strategy). Our recon-
struction algorithm is based on the least square methods with
edge-preserving convex Huber regularization. It reconstructs
more spatial details at a small scale compared to the standard
algorithm, as well as spectral deconvolution and denoising.

Without any optimization, the proposed algorithm actu-
ally takes one hour to reconstruct the 120 × 120 × 2000 hy-
perspectral image with a single CPU at 5GHz with 32 GB of
memory, whereas the standard algorithm takes a few seconds.
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