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Abstract— The use of IEEE 754-2008 half-precision floating-
point numbers is an emerging trend in Graphical Processing
Units’ architecture. Being such a compact way of representing
data, its use may speed up programs by reducing the memory
bandwidth usage and allowing hardware designers to fit more
computing units within the same die space. In this paper, we
highlight the acceleration offered by the use of half floating-
point numbers over different implementations of the same
operation, a 2D convolution. We show that even though it may
lead up to a significant speed-up, the degradation brought by
this new format is not always negligible. Then, we choose a
deconvolution problem inspired by the SKA radio-telescope
processing pipeline to show how half floats behave in a more
complex application.

Index Terms— deconvolution, radio astronomy, half-precision
floating-point, GPU, parallel computing

I. INTRODUCTION

Before appearing in the IEEE standard in 2008 [1] as
binary16, half-precision floating-point arithmetic (FP16) has
been a topic of interest for computer graphics commu-
nity since the early 2000s. In parallel, embedded high-
performance computing [2] has also investigated its use as an
alternative to fixed-point arithmetic in order to design more
energy-efficient hardware accelerators. In the same way,
deep learning has made a renewed interest to approximate
computing [3], [4] especially since GPUs provide half float
computation [5]. Indeed, NVIDIA GPUs are offering half
float storage since 2015 with CUDA 7.5, half float Multiplier-
ACcumulator (MAC) since 2016 with the Pascal architecture
[6] and tensor cores, designed for convolutional neural net-
work training, since 2017 with the Volta architecture [7].
These tensor cores offer a Fused-Multiply-Add (FMA) with
a mixed precision: a half float multiplication of the FP16
operands followed but an accumulation in the FP32 format.

The half-precision floating point format occupies only
16 bits (1 bit of sign, 5 bits of exponent and 10 bits of
mantissa) as illustrated on fig [T] whereas single precision
occupies 32 bits (8 bits of exponent and 23 bits of mantissa).
Compared to 16-bit integers, it offers an increased dynamic
range and compared to 32-bit reals, it divides by 2 the
memory storage and bandwidth, of course at the cost of a
reduced precision and range. Moreover, the theoretical peak
performance (Tflops) on NVIDIA GPU architectures can be
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significantly increased thanks to half-precision. For instance,
the computation power of the Tesla V100 is 15.7 Tflops for
FP32 MACs, 31.4 Tflops for FP16 MACs and 125 Tflops
for tensors cores.
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Fig. 1: IEEE 754 binary16 format

Acceleration and energy-efficiency brought by FP16 com-
putation have to be put in the balance with the potential loss
of precision. Stability of algorithms using FP16 format is an
open problem [8]. Intuitively, one may think that applications
where the raw data output of the instrument is integer values,
with a dozen bits of accuracy, would not be too much
penalized by this compressed-number representation. Like
what has been observed for tomography reconstruction [9].
The goal of this study is to observe its use for another
inverse problem, the deconvolution for radio astronomy. The
optimization algorithm studied (gradient descent) is mainly
based on the 2D convolution operator whose acceleration on
GPU has been widely investigated for single-precision [10],
[11], [12] but as far as we know not yet for half precision.
The motivation of this paper is to benefit from the potential
acceleration of the 2D convolution with FP16 on GPUs in
the perspective of the SKA data processing challenge.

The remainder of this article is organized as follows.
Section II describes the deconvolution problem solved using
a simple gradient descent. Section III makes a benchmark
of 2D convolution on GPU in terms of acceleration and
precision. Section IV studies its application for image recon-
struction in radio astronomy. Section V presents a discussion
and an analysis of the experimental results.

II. DECONVOLUTION

Deconvolution is a classical inverse problem [13] and
arises when the observation model is a convolution

g=Hf+n (1)

where g € RY is the data set, f € RM the unknown,
n € RY unknown noise and H € RV*M the linear obser-
vation model or the convolution operator. If the convolution
is circulant, then N = M, the matrix H is square and



diagonalizable in Fourier space like H = F'AF where
F is the linear Fourier transform and A a diagonal matrix.
If the convolution is not circulant the matrix H is not
necessary square but remains Teeplitz: all lines of H are
shifted version of the first line. In both cases, the matrix H
usually leads to ill-conditioned problems with instability and
noise amplification.

A standard approach for the reconstruction relies on the
regularized least-square where the solution f' is defined as
the minimizer of a data adequacy term and a penalization
term

J =g - Hf|I” + A £]? 2)
f = argmin J(f) 3)
f

The penalization term || f||? on the energy of the solution
allows compensating the pathological behavior of the data
adequacy and, depending on the balance term ), leads to a
well-posed problem with good conditioning.

The explicit minimizer is known

f=(H'H+X) ' Hlg 4)

and is called the Wiener filter when H is diagonalizable in
Fourier space. Otherwise, if the dimension of f is large,
the size of the Hessian matrix H'H forbids the matrix
inversion and the solution f must be computed with an
iterative linear solver [14]. A common one is the gradient
descent or conjugate gradient descent described algorithm
We consider two versions: one with a fixed step o and one
with the optimal one (that corresponds to the maximum
descent in the current direction r) that needs a little extra
computation.

Algorithm 1 The gradient descent algorithm
Require: H, )\, g, ¢, N, ¢

1: Set b= Hlgand Q = H'H + \I
2. Set (O and n < 0
3. repeat
4 k+ HHF™ — b+ )|
5: a+ k'k/k'Qk
6
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FtD) £ _ ok
n+<n+1
: until Some criterion is met
return f(")
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III. CONVOLUTION BENCHMARK

The algorithm shown in the previous section relies heavily
on the convolution operator: two are needed to find k, and
two supplementary ones for the optimal «. Computing a
convolution is time-consuming and is often the bottleneck
of such methods. There are many ways of implementing this
operation on GPU [10]. In this section, we focus on the usage
of half floating-point numbers for those methods.

Four implementations are compared in this benchmark:
cuBLAS, cuDNN, cuFFT, naive and PRCF. The first three
are part of libraries written by Nvidia. cuBLAS is an

implementation of the BLAS API [15]. cuDNN (CUDA
Deep Neural Network) is a low-level API for deep learning
primitives used by other frameworks such as TensorFlow,
Caffe2 or PyTorch [16]. cuDNN itself relies on different
methods to perform a convolution, depending on many fac-
tors: the size of the convolution kernel, whether the images
are batched [17]... cuFFT is a GPU implementation of the
Fast Fourier Transform method to compute a discrete Fourier
transform.

In addition to the implementations found in these libraries,
we tested our own algorithms. “naive” launch one GPU
thread per image pixel. It then loops over the convolution
kernel to perform the multiply-add accumulation. A mixed
strategy has also been tested: data are stored in half precision
and computation are done using floats. In the kernel code,
the GPU threads convert data to floats, do the computation in
float and then convert the result back to half. Finally, we used
“PRCF” (Parallel Register-only Convolution Filter), that was
first presented by Perrot et al [11]. We re-implemented their
method but instead on relying on a fixed code generator, we
took advantage of C++ templates.

For this benchmark, we use a zero-padding method to
handle border issues. Convolutions are done out-of-place. We
first transfer the data to the GPU, time 20 convolutions to
average the results, stop the timer and transfer the data back
to the CPU to check the accuracy of the resulting image.
The convolution kernel used is Gaussian and the image is
a standard 512 x 512 pixels cameraman picture. The GPU
used is a Nvidia Titan V [7].

In figure 2] the cuFFT curve is almost flat. In fact, the
sum of the kernel’s width and the image’s width is padded
to the next power of 2 for performance reasons. In this case,
it’s always 1024, hence these constant results. cuBLAS and
cuDNN are way slower than our custom methods. In fact,
cuDNN relies on a matrix multiplication method, just like
cuBLAS. They are however useful in neural network contexts
as they scale well when many kernels are to be convolved
with the same image.

A gap in computation time appears in both “naive” and
PRCF implementations for a kernel size of 35 or more.
This is due to those implementations being loop unrolled
for smaller kernels. However, the compilation time explodes
as the size of kernel increase: after 35 we chose to tell the
compiler not to optimize them. Finally, because we store the
kernel in the GPU texture cache, those implementations are
also limited by its size. Once it is too big to fit in, we cannot
use them directly.

In terms of performance, once the kernel becomes big
(between 35 and 50, depending on implementations and
optimizations) it is faster to use a Fourier transform to
compute the convolution. We will use this result when
choosing an implementation in part IV.

When using half-precision floats, acceleration depends a
lot on the chosen algorithm. In CUBLAS, it can reach a
x4 speedup (see figure [3). This is due to the library using
NVidia Tensor Cores to perform matrix multiplications[7].
The results for the remaining implementations are a bit



disappointing. For the naive algorithm, however, perfor-
mance increases with a bigger kernel. In fact, the speedup
is mainly explained by fewer memory transfers, that bound
the algorithm when the kernel becomes large. Regarding
PRCEF, the poor performance might be due to worse compiler
optimizations. Finally, in cuFFT, it is harder to give a
justification as we do not have access to the code. Our
explanation is that because memory issues do not coalesce,
the bandwidth is not saturated, hence no real improvement
when using FP16.

In figure [4] the Mean Relative Error (MRE) between the
convolution computed on GPU and one done on CPU is
displayed. MRE is computed as:

i) — yli]
0, otherwise

if z[i] £ 0

1
MRE = + Z 5)

Where = and y are the images to compare and N the total
number of pixels in an image.

Please note that we compared our own reference imple-
mentation with convolve2d from the Python package SciPy.
The results are clear: when using half floats, the loss of
precision is much higher. The error also increases with the
size of the kernel. With a width of 115, cuFFT has a 1%
error, naive and PRCF, a 10% error. This is due to the
multiple imprecisions while accumulating the intermediate
results. The naive mixed strategy (half storage and float
computation) gives nearly the same acceleration than naive
half but provides a lower error (10~%) invariant to kernel
size.
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Fig. 2: Execution time in single precision

IV. APPLICATION TO IMAGE RECONSTRUCTION IN
RADIO ASTRONOMY

The future Square Kilometre Array (SKA) will provide
radio interferometric data with unprecedented detail. To
achieve the nominal performances of the instrument, image
reconstruction algorithms are challenged to scale well with
TeraByte image sizes never seen before. In the perspective of
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Fig. 3: Acceleration ratio in half vs single
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Fig. 4: Error compared to a reference implementation

this challenge, the simulations which follow focus on image
deconvolution for radio astronomy.

We used a simulated PSF (Point Spread Function) for the
SKA Phase 1 mid-frequency array. The array, which will
include 197 dishes, will be built in South Africa from its
precursor Meerkat. The PSF was obtained using the HI-inator
package based on the MeqTrees software [18] (figure [5a)). To
ensure a high dynamic range, the simulated sky is composite
of point sources and a faint halo modeled by a homogeneous
Gaussian field (figure [5b). The ratio between the amplitude
of the sources and the maximum value of the halo was set
to 1072, The signal to noise ratio on the observed “dirty”
image is set to 37dB.

The goal is to reconstruct the image of the sky given
a noisy and distorted observation. To accomplish that, we
base our approach on the minimization of the quadratically
penalized criterion (2) using a gradient descent algorithm
as described in section II. Please note that the purpose of
these simulations is not to illustrate the performances of the
“state of the art” reconstruction algorithms but rather empha-
sizes advantages and shortcomings of using half-precision



floating-point numbers. All convolutions are done using
cuFFT. On figure [6] you can observe multiple reconstructed
images using different strategies and precisions. Criterion
values across iterations are visible on figure [/} The balance
term A has been set to 0.01 as it provided sensible results.

The FP32 optimal-step curve represents the criterion value
J across iterations of the algorithm described in section II
(figure 7). As you can see, it quickly decreases and becomes
almost flat. The same behavior is observed with the “float
fixed-step” curve. In this method, the step « is constant. We
chose it by looking at the optimal step values found in the
first method and choosing the minimum one. The “mixed”
curve behaves the same way. For this implementation, data
is stored as halves but computations are made using floats.

The half-precision counterpart curves’ behavior is slightly
more complex. The optimal step method does not make
the criterion decrease for every iteration, hence the noisy
values. We can also notice a difference depending on the
SNR (Signal-to-Noise Ratio): with a fixed step and a high
(37dB) SNR, the criterion seems to decrease but only during
the first 250 iterations. With more noise (16dB SNR) “half
- fixed step” has the same behavior as the optimal step.

To address this issue, we try a different method: rather than
blindingly using f"t1) « f(") _ag, we use a backtracking
algorithm. The criterion for the next iteration candidate is
computed: if it is higher than the previous one, we step
back, set a <= 5 and try the new value. We proceed until
the criterion decreases. Note that sometimes the computed
gradient is so inaccurate that it is impossible to make the
criterion decrease along its direction. When that happens
(after a fixed number of retries), the procedure is ended. We
then use the final image of this method as the starting point
of an FP32 optimal step method. This is referred to as “half
- backtracking than float -optimal step” in figure
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Fig. 5: The dataset used

V. DISCUSSION & ANALYSIS

The first thing to point out is that it is difficult to rely on
computations done using FP16 numbers. As seen in part II,
when doing a convolution, the error increases with the kernel
size. In part III, with a 2048x2048 kernel, it is not precise
enough to make the criterion decrease at each step. On figure
[] the difference is striking across computations done with
FP32 and FP16. The MSE between these two images is 9.46,
with some points having a relative difference over 1000%.
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Fig. 6: Reconstructions of f with different precisions (the
cubic root is displayed for better contrast)

Deconvolution relying on half floats seems also much
more sensitive to noise levels. By comparing figures [7a] and
[7bl we notice different behaviors in the half-float implemen-
tations. The fixed-step version seems noisy with a 16dB SNR
but not with a 37dB SNR. There are even differences in
the noisy-shaped curves’ behavior: they appear to slowly
converge on a noisier dataset (16dB SNR). This may be
explained by some form of dithering.

In any case, you must put extra care when using half floats
as their range is very limited. This issue arises when using
cuFFT uses the Fourier domain do compute convolutions.
As cuFFT performs non-normalized transforms, half float
numbers are easily overflowed. Infinite values will appear
in the DFT and lead to wrong results. If you try to first
divide your image values by the number of elements, you
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Fig. 7: Criterion value across iterations

will underflow and set most values to zero (depending on
the size of your data). A solution is to pre-divide by the
square root of the number of elements, do the cuFFT, then
re-divide by the square root of the number of elements.

Even with this extra care, it was not possible to rely on
the convolution in the descent algorithm shown in III. The
criterion value is indeed imprecise. This can clearly be seen
in figure [7| when stepping from half to single precision in
the “half then float” method. Even with the same image,
the criterion significantly differs depending on the precision
used for its computation. Anyway, using the best image
computed with FP16 as an initializer for the FP32 method is
slightly better than using a zero-filled image. It is, however,
equivalent to an image found after only a few iterations in
single precision.

It is unclear why the images produced with the optimal
step method using half floats visually give rather good
results. Across the iterations, FP16 images do appear to be
better even though the criterion does not decreases (even we
computed in FP32). The problem might be in the definition
of “visually better”. Multiple images hold the same criterion
value but some may “look” closer to the reconstruction. We

(a) H * f using FP32 (b) H * f using FP16

0.00012
0.00010
0.00008
0.00006
0.00004

0.00002

0.00000

(c) Squared difference between
FP16 and FP32 results

Fig. 8: Convolution errors with our dataset

are currently investigating this issue.

More generally, a dataset involving a smaller kernel may
mitigate many problems. When possible, it seems appropriate
to use half floats only for storage and convert them on-
the-fly as single floats to benefit from lighter data transfer
and reasonable accuracy. We can observe on figure [/| that
the “mixed” curve has similar performance as the float-only
implementation. This kind of strategy is in fact used by
Nvidia in their Tensor Cores[7]. In conclusion, the switch
from FP32 to FP16 should be done carefully.

VI. CONCLUSION

In this paper, we have observed the non-negligible loss of
precision for 2D convolution using half-precision arithmetic
on GPUs. We have pointed out that for limited convolution
kernel sizes, a good compromise between acceleration and
calculation error is to use a storage in half and a computation
in single.

Then, we incorporated half precision arithmetic within a
complex application: optimization for image reconstruction
in radio astronomy with a kernel convolution of the same size
as the 2D images. We tried several methods to choose the
step’s size in the gradient descent and achieved good visual
results. Even though a good convergence does not seem to
be achieved using solely half precision, relying on it only
for storage but performing computations as floats makes the
algorithm converge.

REFERENCES

[1] IEEE Standard for Floating-Point Arithmetic. [EEE Std 754-2008,
pages 1-70, August 2008.

[2] L. Lacassagne, D. Etiemble, and S. A. O. Kablia. 16-bit floating point
instructions for embedded multimedia applications. In Seventh Inter-
national Workshop on Computer Architecture for Machine Perception
(CAMP’05), pages 198-203, July 2005.



[3]

[4]

[5]

[7]

[8]

[9]

[10]

(11]

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pri-
tish Narayanan. Deep Learning with Limited Numerical Precision.
arXiv:1502.02551 [cs, stat], February 2015. arXiv: 1502.02551.
Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David.
Training deep neural networks with low precision multiplications.
arXiv:1412.7024 [cs], December 2014. arXiv: 1412.7024.

N. M. Ho and W. F. Wong. Exploiting half precision arithmetic in
Nvidia GPUs. In 2017 IEEE High Performance Extreme Computing
Conference (HPEC), pages 1-7, September 2017.

Nvidia. GP100 Pascal Whitepaper,
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-
architecture-whitepaper.pdf.

Nvidia. Volta V100 whitepaper,
http://images.nvidia.com/content/volta-architecture/pdf/volta-
architecture-whitepaper.pdf.

P. Luszczek, J. Kurzak, I. Yamazaki, and J. Dongarra. Towards numer-
ical benchmark for half-precision floating point arithmetic. In 20717
IEEE High Performance Extreme Computing Conference (HPEC),
pages 1-5, September 2017.

Clemens Maal}, Matthias Baer, and Marc KachelrieB. CT image
reconstruction with half precision floating-point values. Medical
Physics, 38(51):S95-S105, July 2011.

O. Fialka and M. Cadik. FFT and Convolution Performance in Image
Filtering on GPU. In Tenth International Conference on Information
Visualisation (IV°06), pages 609-614, July 2006.

Gilles Perrot, Stéphane Domas, and Raphaél Couturier. An optimized
GPU-based 2d convolution implementation: AN OPTIMIZED GPU-
BASED 2d CONVOLUTION IMPLEMENTATION. Concurrency and

[12]

[13]

[14]

[15]

[16]

(17]

(18]

Computation: Practice and Experience, 28(16):4291-4304, November
2016.

Pavan Yalamanchili, Umar Arshad, Zakiuddin Mohammed, Pradeep
Garigipati, Peter Entschev, Brian Kloppenborg, James Malcolm, and
John Melonakos. ArrayFire - A high performance software library for
parallel computing with an easy-to-use API. AccelerEyes, Atlanta,
2015.

Jérome Idier and Laure Blanc-Féraud. Bayesian Approach to Inverse
Problems. pages 141-167. January 2010.

Jonathan Richard Shewchuk. An introduction to the conjugate gradient
method without the agonizing pain. Carnegie-Mellon University.
Department of Computer Science, 1994.

J. J. Dongarra, Jeremy Du Croz, Sven Hammarling, and 1. S. Duff. A
Set of Level 3 Basic Linear Algebra Subprograms. ACM Trans. Math.
Softw., 16(1):1-17, March 1990.

Deep Learning Frameworks, https://developer.nvidia.com/deep-
learning-frameworks. NVIDIA Developer, April 2016.

Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Co-
hen, John Tran, Bryan Catanzaro, and Evan Shelhamer. cuDNN:
Efficient Primitives for Deep Learning. arXiv:1410.0759 [cs], October
2014. arXiv: 1410.0759.

Jan E. Noordam and Oleg M. Smirnov. The MeqTrees software system
and its use for third-generation calibration of radio interferometers. As-
tronomy & Astrophysics, 524:A61, December 2010. arXiv: 1101.1745.



