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ABSTRACT

The paper deals with Gibbs samplers that include high-dimen-
sional conditional Gaussian distributions. It proposes an effi-
cient algorithm that only requires a scalar Gaussian sampling.
The algorithm relies on a random excursion along a random
direction. It is proved to converge, i.e. the drawn samples
are asymptotically under the target distribution. Our origi-
nal motivation is in unsupervised inverse problems related to
general linear observation models and their solution in a hier-
archical Bayesian framework implemented through sampling
algorithms. The paper provides an illustration focused on 2-D
simulations and on the super-resolution problem.

Index Terms — High-dimensional sampling, Big Data,
Gibbs sampling, Bayesian strategy, inverse problem.

1. INTRODUCTION

Gaussian distributions are common throughout statistical sig-
nal and image processing, nevertheless their efficient sam-
pling may be a cumbersome problem in high-dimension and
the current paper deals with this question.

Our original motivation is in inverse problems [2], espe-
cially advanced questions and hierarchical Bayesian strate-
gies, implemented through Monte-Carlo Markov Chain and
more specifically Gibbs Sampler (GS). Indeed, consider the
general linear direct operator A and data y modeled by y =
Az + n. The unknown object « and the noise n are mod-
eled as independent Gaussian vectors conditionally on a vec-
tor €. This framework encompass a variety of problems by
including diverse parameters in 8: unsupervised [3] and semi-
blind [4] problems, by including hyperparameters and acqui-
sition parameters; non-Gaussian models based on condition-
ally Gaussian ones involving latent variables (e.g., location
or scale mixtures of Gaussian) for edge preserving [5, 6, 3];
hierarchical models [7, 8, 9] involving labels for inversion-
segmentation. In this framework, the estimation of both o and
0 relies on the sampling of the joint posterior f(x,8|y), and
this is the original motivation of our work. It requires the han-
dling of the high-dimensional conditional posterior f(x|€,y)
that is Gaussian. It is denoted p(x) with mean m and preci-
sion @) and its sampling is the core question of the paper.

The difficulty is directly related to handling high-dimen-
sional precision Q. Its diagonalization, inversion and factor-
ization (square root, Cholesky,. . .) are generally unfeasible in
high-dimension due to both computational cost and memory
footprint. Nevertheless, such solutions are practicable in two
cases: @ circulant (strategy [10, 11] relies on diagonaliza-
tion computed by FFT) and Q sparse (algorithm [12, 13, 14]
is based on a Cholesky decomposition and a linear system').
For more general cases, solutions founded on iterative opti-
mization algorithm have been recently proposed.

1. A conjugate gradient sampler [16] relies on two prop-
erties: (¢) a Gaussian distribution has Gaussian condi-
tional distributions and (i%) a set of mutually conjugate
directions w.r.t. QQ is available.

2. Paper [17] (also [18, 19]) proposes a Perturbation-Op-
timization principle (previously applied in [7, 8]): opti-
mization of an adequately perturbed criterion.

In both cases, generally, an exact sample is not rigorously
tractable. In the former, it requires specific characteristics re-
garding eigenvalues of the precision matrix. In the latter, an
exact optimization is needed but practically a truncation of
the iterations is implemented. So, the convergence is no more
guaranteed except in [20] that introduces a Metropolis step.

Our main contribution is to promote directional sampling:
given a direction 8, the keystone of the advance is to ex-
actly sample the component of x along the direction §. This
must be achieved under the appropriate conditional distribu-
tion p(xs|x\5), where x\ 5 denotes the complementary part
of x (see Sect. 2.1 for precise definition). The algorithm
takes advantage of the ease of calculating the pdf for the di-
rectional component of a multivariate Gaussian. These ideas
are strongly related to different existing works.

e If the direction § is the canonical coordinate, the algo-
rithm amounts to a pixel-by-pixel GS [5].

o The algorithm can be viewed as a specific random scan
sampler [21, 22, 23].

! Another strategy [15] simultaneously updates large blocks of variables.



e A similaridea is at work in Langevin and Hybrid Monte
Carlo [24, 25, 26] (also [27]): the proposal law relies on
an ascent direction of the target to increase the accepta-
tion probability. Here, the exact distribution is sampled,
so the proposal is always accepted.

Convergence is guaranteed, i.e. samples are asymptotically
distributed according to the pdf p(x). The proof is valid for
any direction 6, but practically, the direction is the (possibly
preconditioned) gradient of p(x).

Subsequently, Sect. 2 presents the proposed algorithm.
Sect. 3 gives an illustration through a simple 2-D problem
and an academic problem in super-resolution. Sect. 4 presents
conclusions and perspectives.

2. GRADIENT SCAN SAMPLING

The objective is to generate samples from a high-dimensional
Gaussian distribution N'(m, Q~1), for z € R” written:

p(x) = (2m) "2 (det Q)'/* exp {~J ()}
with potential: J(x) = (x — m)'Q(x — m)/2.

2.1. Preliminary results

This section gives usual definitions and results based on [28]
needed to provide convergence proof and links between ma-
trix factorization and optimization / sampling procedures.

Definition 1. A set {d,,,n =1,..., N} of non-zero vectors
in RN such that: d*, Qd,, =0 forn,m=1,... N, n#
m is said mutually conjugate w.r.t. Q. A

A mutually conjugate set {dy, ..., dxn} w.r.t. Q is abasis

of RY, then, for all z € RV:

d, Qx
d,Qd,,

So, if £ ~ N(m,Q!) is a Gaussian random vector with
mean m and precision @, then the «,, are also Gaussian:

,Qm 1
‘“”N<%Q%’@Q%> M

N
T = Z a,d, with a, =

n=1

and reciprocally if the c,, are under (1) then z ~ N (m, Q~1).

In particular, let z¢ € R be a “current” point and d; €
RY a given “direction”. One can find ds, . .., dy such that
{ds,...,dy} is mutually conjugate w.r.t. @ and x° writes:

Cc __ C
33—2 o, d,
n

Consider now the one-dimensional subset

N
Dy, (z°) = {Z andy, a1 € R, o, = af, forn # 1}

n=1
= {;I:C + (al - af)dl, o1 € R}

We are interested in the conditional pdf p(x|x € Dg, (z°)).

Proposition 1. A sample T according to p(x|x € Dy, (z°))
can be obtained by:

t c _
1 sample&w/\/<d1Q<Cc m),. _1 >

d'\Qd, T diQd,
2. compute T = ¢ — a d;

Proof. The point is to show that the coordinate of & on the
direction d; follows the Gaussian distribution (1). To this
end, let us write T:

N
T=a°—ad =(of —a)di + »_ady,
n=2
The coordinates of the current point ° reads:
af =diQx°/d"Qd,

So, the distribution of the component on d; is:

¢~ ¢ diQ(z°—m) 1
af —a ~ N(al & Qd, ’dtlel)

diQm 1
<d‘iQd1 dtQd, -

2.2. Perturbed Gradient Scan Gibbs Sampling

The principle of the proposed algorithm is to sample, at each
iteration, one direction of RYN. The chosen direction will
be the (possibly preconditioned) gradient of the potential of
p(x), with a stochastic perturbation as an additional Gaussian
component in RY with mean 0 and covariance 02I. The
proposed algorithm is named Perturbed Gradient Scan Gibbs
Sampler (PGSGS) and it is described by algorithm 1.

Algorithm 1 : PGSGS

Define an initial point 2(*) and a variance o2 > 0.
Fort =1,2,... iterates

1: compute d = VJ (") = Q(z*~Y —m)
2: sample perturbed gradient d ~ N (d,o%Iy)
7dt (t—1) _ 1
3: sample () ~ N Q(aj = ™) D ——
dtQd atQd

4: compute ) = (=1 4 o

5: quit when the stopping criterion is reached

Proposition 2. For any o > 0, the Markov chain produced by
algorithm 1 is aperiodic and irreducible, in addition it admits
p(x) as an invariant distribution.

Proof. The algorithm 1 can be viewed as a random scan
Gibbs sampler as studied in [22] (see also [21, 23]), where
the random choice is not according to the coordinates in the



canonical basis, but according to a given direction d;. There-
fore the same arguments as detailed in [22] can be used to
prove the proposition: the fact that algorithm 1 is sampling
from the right conditional distribution ensures that p(x) is
an invariant distribution of the chain. And the fact that if
o > 0 all the direction can be explored with a strictly positive
probability ensures the chain to be irreducible. O

2.3. Remarks and extensions

Proposition 2 states that p(x) is an invariant density if o >
0. In fact, the direction perturbation is needed to ensure the
chain’s irreducibility. If o = 0, there is no perturbation, hence
the sampling direction is a deterministic function of a(*~1).
More assumption are then needed to ensure the irreducibility.
This point will be addressed in a future paper.

A possible extension is to include conjugate directions.
This comes down to integrate a “conjugate gradient sampling
algorithm” [16] into the Gibbs loop. Another possible exten-
sion relies on preconditioned directions as shown in Sect. 3.

More generally, one can consider other directions, as a
function ®(z(*~1)) of current states 2 (*~). The perturbation
applied in step 2 may be unnecessary, depending on ®. For
example if ®(z(*~1)) is the preconditioned gradient direction
the perturbation is necessary in the general case. If <I>(:c(t*1))
is one particular pixel (and ensures that all pixels are infinitely
sampled) then the algorithm comes down to the pixel-by-pixel
Gibbs sampler, and the perturbation step is unnecessary.

3. NUMERICAL RESULTS

The paper details an application of the proposed PGSGS al-
gorithm in two problems. The first one is an illustration in
2D for quantitative and qualitative results. The second is a
super-resolution problem (as in [17] and [20]).

3.1. Results on 2D Gaussian law

In the 2D case, samples are generated by several algorithms:

e Cholesky (Chol)

o PGSGS (GSS) possibly with preconditioning (PreGSS).
The preconditionner is taken as the inverse of the co-
variance diagonal.

e Truncated and Exact Perturbation Optimization (TPO
and EPO) [17].

For comparison, inefficient algorithms have also been tested:

e PGSGS with null (or too small) perturbation (NoPer)

o the iid direction sampler (IIDDS): a PGSGS with per-
turbation simulated from N'(0, I).

Fig. 1 shows the histograms for each algorithm. The Chol
and EPO correctly simulate the law as expected. Concerning
PreGSS the algorithm provides as good as Chol simulation.

GSS has more difficulties and often need more iterations as il-
lustrated here where the exploration is not yet sufficient. The
Kullback-Leiber divergence (KLD) between Gaussians, along
the iterations, for each algorithm are in Fig. 2 and 4. We sepa-
rate the KLLD into a mean and a covariance term. As expected,
Chol performs better than any other, followed by our algo-
rithm PreGSS, EPO and finally GSS. TPO is the worst and
the effect of truncation is blatant. The main difference con-
cerns the covariance since the mean seems well estimated by
all algorithms (all the KLD are in the same range).

For inefficient algorithms of Fig. 3 and 4, the mean seems
also correctly estimated, but the covariance is defective. It
illustrates the difficulty of full Gaussian simulation when the
covariance is important. It is also surprising that inefficient
algorithms still correctly estimate the mean. The Fig. 3 is a
good illustration of the phenomena in particular for IIDDS.
For this algorithm, the coefficients are concentrated around
the mean but the exploration is defficient by choosing an
isotropic direction around the origin. The covariance is bi-
ased even with a huge number of iteration. This explains
the bad KLD reported in Tab. 1. The IIDDS illustrates the
inefficiency of PGSGS when a defective direction is chosen.
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Fig. 2. KLD of the correct algorithms. left: the full KLD.
right: KLD of the mean. The main difference concerns the
covariance estimation.
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Fig. 3. Histograms of samples of deficient algorithm from left
to right: GSS NoPer, IIDDS and TPO.

3.2. Super resolution as a large scale problem

As a more realistic question we address a super-resolution
problem. Due to high-dimension Chol and EPO are not fea-
sible. The feasible algorithms are all variants of PGSGS and
TPO (and [20] partially inspired by TPO).

The usual forward model reads y = SHx + n. In this
equation, y € RM collects the pixels of the low resolution
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Fig. 1. Histograms from correct algorithms. The target law is correctly explored by all algorithms.

Chol | EPO | GSS| PreGSS | GSS NoPer | PreGSS NoPer | TPO
6,51-10° | 1,63-10 % | 293 | 1,93-10 % || 17069 | 204070 | 1,05

Table 1. The Kullback-Leiber divergence
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Fig. 4. KLD of the deficient algorithms. left: the covariance
part of the KLD. right: the mean part of the KLD. The main
difference concerns the covariance estimation.

data (five 128 x 128 images) and x € RY collects the pix-
els of the original scene (one 256 x 256 image). The noise
n € RM accounts for measurement and modeling errors. H
isa N x N circulant-block-circulant convolution matrix mod-
elling the observation system (here it is a 5 x 5 window). S
is a M x N matrix modelling motion (here translation) and
decimation: it is a down-sampling binary matrix indicating
which pixel of the blurred image is observed. This operator
break the invariance of the forward model.

The chosen noise prior is uncorrelated . ~ N(0,~,,11)
ans the chosen object prior accounts for smoothness: x ~
N (0, (7. D*D)~1) where D is the circulant convolution ma-
trix of the Laplacian filter. The full posterior pdf writes

i gt
plaly) x exp [~ 2 |y — SHa|* - 2| D]

Because of S, the covariance can not be diagonalized by
Fourier transform. However we have a diagonalizable pre-
conditioner M = (v, H'H + v, D'D)~!, hence a direct
application of our PreGSS: at iteration ¢

1. draw d®) ~ p (d]z*~V) = N (MV J(z),I)
2. draw o ~ p (a|dP) = N (pta,02) with

_d'VJ(x)
¢ dtyTd
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Fig. 5. Top: estimated mean with TPO (left) and PreGSS
(right). Bottom: estimated standard deviation.

We compare to the TPO algorithm [17]. In both cases
100 samples have been simulated. The truncation for TPO is
sufficiently late (more than 50 iterations) so no difference is
visible with more iterations. We can see Fig. 5 that PreGSS
provides the same quality estimation for both mean and stan-
dard deviation than TPO while being a guaranteed algorithm.

4. CONCLUSIONS AND PERSPECTIVES

As a conclusion, we provide a new algorithm for simulation
of high-dimensional Gaussians with guaranteed convergence.
We illustrate in a 2D problem where everything is under con-
trol and in a super-resolution problem. A direct perspective
is the addition of such algorithm in a Gibbs sampler that in-
cludes hyper-parameter simulation. In this case, our algo-
rithm still simulate the correct target posterior without ap-
proximation.
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