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Sampling high-dimensional Gaussian distributions

for general linear inverse problems
F. Orieux∗, O. Féron and J.-F. Giovannelli

Abstract—This paper is devoted to the problem of sampling
Gaussian distributions in high dimension. Solutions exist for two
specific structures of inverse covariance: sparse and circulant.
The proposed algorithm is valid in a more general case especially
as it emerges in linear inverse problems as well as in some hier-
archical or latent Gaussian models. It relies on a perturbation-
optimization principle: adequate stochastic perturbation of a
criterion and optimization of the perturbed criterion. It is
proved that the criterion optimizer is a sample of the target
distribution. The main motivation is in inverse problems related
to general (non-convolutive) linear observation models and their
solution in a Bayesian framework implemented through sampling
algorithms when existing samplers are infeasible. It finds a direct
application in myopic / unsupervised inversion methods as well as
in some non-Gaussian inversion methods. An illustration focused
on hyperparameter estimation for super-resolution method shows
the interest and the feasibility of the proposed algorithm.

Index Terms—Stochastic sampling, high-dimensional sampling,
inverse problem, Bayesian strategy, unsupervised, myopic

I. INTRODUCTION

This work deals with simulation of high-dimensional Gaus-

sian and conditional Gaussian distributions. The difficulty of

the problem is directly related to handling high-dimensional

covariances R and precision matrices Q = R−1. The problem

has already been investigated and solutions exist in two cases.

• When Q is sparse, two strategies are available. The first

one [1, chap. 8], relies on a parallel Gibbs sampler based

on a chessboard-like decomposition. It takes advantage of

the sparsity of Q to update simultaneously large blocks of

variables. The second strategy [2, 3] relies on a Cholesky

decomposition Q = LtL: a sample x is obtained by

solving the linear system Lx = ε, where ε is a zero-

mean white Gaussian vector. The sparsity of Q ensures

feasible numerical factorization and the sparsity of L

ensures feasible numerical resolution of the linear system.

• [4, 5] propose a solution for circulant matrix Q, even

non-sparse. In this case, the covariance is diagonal in the

Fourier domain: the sampling is based on independent

sampling of the Fourier coefficients. Finally, the sample

is computed by FFT and it has been used in [6–10].

To our knowledge there is no solution for more general

structure in high dimension because factorization (Cholesky,

QR, square root,. . . ), diagonalization and inversion of Q

and R are numerically infeasible. The obstacle is due to

both computational cost and memory footprint. The proposed
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algorithm overcomes this obstacle when Q is of the form

Q =

K∑

k=1

M t
kR

−1
k Mk (1)

as it appears in inverse problems [11]. Indeed, let us consider

the general linear forward model y = Ax+n, where y, n and

x are the observation, the noise and the unknown image and

A is a linear operator. Consider, again, two prior distributions

for n and x that are Gaussian conditionally on a parameter θ.

This framework is very general: it includes linear inverse

problems [11] as well as some hierarchical or latent Gaussian

models [12] and it can be used in many applications. In image

reconstruction, it covers a majority of current problems, e.g.

unsupervised [8] or myopic (semi-blind) [9] inverse problems,

by including acquisition parameters and hyperparameters in θ.

Moreover, the framework also includes non-linear models,

based on conditional linear models such as bilinear or mul-

tilinear ones (see Section III-B). The framework also covers

some non-stationary or inhomogeneous Gaussian priors and

non-Gaussian priors involving auxiliary / latent variables [6,

8, 13–15] (e.g., location or scale mixtures of Gaussian), by

including these variables in θ.

Let us focus on the joint estimation of x and θ from the

posterior p(x,θ|y). It commonly requires the handling of the

conditional posterior p(x|θ,y) that is Gaussian with precision

matrix Q of the form (1), as will be shown in section II-B.

In the general case, Q is neither sparse nor circulant so

existing sampling algorithms fail when the dimension of x is

very large while the proposed one handles this case. It relies

on a perturbation-optimization principle: adequate stochastic

perturbation of a quadratic criterion and optimization of the

perturbed criterion. A recent paper [16] briefly describes a

similar algorithm for compressed sensing in signal processing.

Our paper deepens and generalizes this contribution.

Subsequently, Section II presents the proposed algorithm

and its direct application to linear inverse problems. Section III

gives an illustration through an academic problem in super-

resolution. Section IV presents conclusions and perspectives.

II. PERTURBATION-OPTIMIZATION ALGORITHM

A. Description

We focus on the problem of sampling from a target Gaussian

distribution whose precision matrix Q is in the form (1). When

Q is neither sparse nor circulant, existing algorithms fail in

high dimension because of an excessive memory footprint as

illustrated in section III. We propose a solution based on the

Perturbation-Optimization (PO) algorithm described hereafter,

whose memory footprint is far smaller.
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Proposition 1: The optimizer x̂ of criterion (5) resulting

from Algorithm 1 is Gaussian

x̂ ∼ N

(
Q−1

(
K∑

k=1

M t
kR

−1
k mk

)
,Q−1

)
. (2)

Proof: The optimizer x̂ of criterion (5) is explicit:

x̂ =

[
K∑

k=1

M t
kR

−1
k Mk

]−1( K∑

k=1

M t
kR

−1
k ηk

)

= Q−1

(
K∑

k=1

M t
kR

−1
k ηk

)
.

(3)

It is clearly a Gaussian vector as a linear combination of K
Gaussian vectors. Its expectation and covariance are calculated

below using elementary algebra: from (4) and (3), we have

E [x̂] = Q−1

(
∑

k

M t
kR

−1
k E [ηk]

)

= Q−1

(
∑

k

M t
kR

−1
k mk

)

E
[
x̂x̂t

]
= Q−1


∑

k,k′

M t
kR

−1
k E

[
ηkη

t
k′

]
R−1

k′ Mk′


Q−1

= Q−1

(
∑

k

M t
kR

−1
k

(
Rk +mkm

t
k

)
R−1

k Mk

)
Q−1

= Q−1 +E [x̂]E [x̂]
t

that completes the proof.

The feasibility of Step P clearly depends on the capability to

sample from Gaussian distributions N (mk,Rk). It is usually

the case in inverse problems and it will be actually the case

in super-resolution applications shown in section III-A and in

other contributions shortly described in section III-B.

Regarding Step O, J being quadratic, a large literature [17]

is available about its numerical optimization, e.g. gradient pro-

cedure (standard, corrected, conjugate, optimal step size. . . ).

Such algorithms require the computation of criterion (5) and

its gradient. The feasibility of Step O clearly depends on

the capability to compute that without the storage of large

matrices. It is usually the case in inverse problems and it will

be actually the case in applications shown in section III-A and

described in section III-B.

However, the desired sample is the exact optimizer, so,

Step O could require N iterations of a conjugate gradient

algorithm for a problem of dimension N . Therefore the

complexity could be O(N3) that is equivalent to the one of a

Cholesky decomposition. However, the optimization procedure

can be stopped earlier without practical loss of precision and

the complexity falls down to O(PN2) for P iterations. In

addition, for a band matrix, the complexity of the proposed

algorithm becomes O(MPN) and the one of the Cholesky de-

composition becomes O(MN2). Anyway, the main advantage

of the proposed algorithm is its reduced memory footprint: it

avoids the storage of neither Q nor its (Cholesky, QR, square

root,. . . ) factors.

Algorithm 1 : Perturbation-Optimization algorithm.

1: Step P (Perturbation): Generate independent vectors

ηk ∼ N (mk,Rk), for k = 1, . . .K (4)

2: Step O (Optimization): Compute x̂ as the minimizer of

J(x) =

K∑

k=1

(ηk −Mkx)
t
R−1

k (ηk −Mkx) (5)

Remark 1: Still regarding Step O, it would be awkward if

Q was badly scaled, but it is not the case here for the following

reason. In usual ill-conditioned inverse problems, A is badly-

scaled but the aim of regularization is precisely to overcome

this difficulty and to produce a well-scaled matrix Q.

B. Application to inverse problems

The purpose is to solve an inverse problem, stated by the

forward model y = Ax+n, in a Bayesian framework based

on the following models:

• A describes any observation system that can depend on

unknown acquisition parameters,

• priors for the noise n and the object x are Gaussian

N (mn,Rn) and N (mx,Rx), conditionally on a set of

hyperparameters and auxiliary variables.

In a general statement, acquisition parameters, hyperparam-

eters and auxiliary variables are collected in θ. The general

inverse problem then consists in estimating x and θ through

the posterior p(x,θ|y). Its exploration can be achieved by

means of a Gibbs sampler which iteratively samples from

p(θ|x,y) and p(x|θ,y). The conditional posterior p(x|y,θ)
is a correlated Gaussian distribution: N (mpost

x ,Rpost
x ) with

Rpost
x =

(
AtR−1

n A+R−1
x

)
−1

mpost
x = Rpost

x

(
AtR−1

n [y −mn] +R−1
x mx

)

where θ is embedded in A,Rn and Rx for simpler notations.

If A has no particular properties, Q = (Rpost
x )−1 is neither

sparse nor circulant, and existing sampling algorithms are not

applicable. The PO algorithm makes it possible to sample

from N (mpost
x ,Rpost

x ) by applying Algorithm 1 with K = 2,

M1 = A, M2 = I , R1 = Rn, R2 = Rx, m1 = mn and

m2 = mx. In this context, it can be said that the optimization

procedure converts prior samples into a posterior one.

III. ILLUSTRATION

The proposed PO algorithm makes it possible to resort to

stochastic sampling algorithms in inverse problems providing

two main advances:

• capability to jointly estimate extra unknowns included in

θ (acquisition parameters, hyperparameters, . . . ),

• access to the entire unknown distribution providing un-

certainties (standard deviation, credibility interval,. . . ).

These advances are illustrated in the present section.
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A. Unsupervised super-resolution

We detail an application of the proposed PO algorithm to the

super-resolution (SR) academic problem: several blurred and

down-sampled (low resolution) images of a scene are available

in order to retrieve the original (high resolution) scene [18, 19].

It is shown that the crucial novelty, enabled by the proposed

PO algorithm, is to allow the use of sampling algorithms in

SR methods and thus to provide hyperparameter estimation.

We resort to the standard forward model in SR: y =
Ax+n = PHx+n. In this equation, y ∈ RM collects the

pixels of the low resolution images, here 5 images of 128×128
pixels (M = 81920) and x ∈ RN collects the pixels of the

original image, here 256×256 pixels (N = 65536). The noise

n ∈ RM accounts for measurement and modeling errors. H

is a N × N circulant convolution matrix that accounts for

the convolution part of the observation system. Practically,

the impulse response is a Laplace shape with FWHM of 4

pixels. P is a M ×N decimation matrix: it is a binary matrix

indicating which pixel is observed. Finally, A is a M × N
matrix (that is to say 81920 × 65536). The prior distribution

for n is N (0, γ−1
n I) and the one for x is N (0, γ−1

x DtD)
where D is the N × N circulant convolution matrix of the

Laplacian filter. The hyperparameters γn and γx are unknown

and their prior law are Jeffreys’. The posterior [9] is

p(x, γn, γx|y) ∝ γM/2−1
n γ(N−1)/2−1

x

exp
[
−γn‖y − PHx‖2/2− γx‖Dx‖2/2

]
. (6)

It is explored by a Gibbs sampler: iteratively sampling γn, γx
and x under their respective posterior conditional distribution

p(γ(k)
n |x, γx,y) = G

(
1 +M/2, 2/

∥∥∥y − PHx(k−1)
∥∥∥
2
)

p(γ(k)
x |x, γn,y) = G

(
1 + (N − 1)/2, 2/

∥∥∥Dx(k−1)
∥∥∥
2
)

p(x(k)|γx, γn,y) = N (mpost
x ,Rpost

x )

with Rpost
x =

(
γ(k)
n HtP tPH + γ(k)

x DtD
)
−1

and mpost
x = γ(k)

n Rpost
x P tHty.

The conditional posteriors for the hyperparameters are Gamma

distributions so they are easy to sample.

The conditional posterior for x is Gaussian, but the use

of existing algorithms is impossible due to the structure

and the size of Rpost
x . Regarding the structure, according

to Section II-B, with A = PH: A is non-circulant due

to the decimation and A is non-sparse due to large support

of the impulse response. Regarding the size, Rpost
x (and its

Cholesky factor) is a huge N × N matrix, that is to say

65536×65536 and its footprint in memory would be 32GB. As

a consequence, neither the precision matrix nor its Cholesky

factor can be stored on standard computers.

On the contrary, the proposed PO algorithm only requires

the storage of four 256 × 256 matrices and its footprint in

memory is only 2MB that is easy to manage on standard

computers. Regarding the computational cost:

• Step P requires a sample under each prior distribution: x

is computed by FFT (see item 2 of Section I) and n is

trivially computed since it is a white noise.

• Step O is achived by a conjugate gradient procedure with

optimal step size. It only requires computations of con-

volutions (by FFT), decimation and zero-padding.

So, the proposed PO algorithm is feasible and it easily provides

a desired sample. Practically, it takes1 about one second (i.e.

around P = 50 gradient iterations) to obtain one sample.
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Fig. 1. Chains and histograms of hyperparameters γn and γx.

Fig. 1 shows the iterates and illustrates the operation and

convergence. After a burn-in period of about 25 iterations,

the algorithm is in its converged state and the total number of

iterations is 59 to ensure a good exploration of the distribution.

Histograms approximating marginal posteriors are also given

and the posterior means are γ̂n ≈ 7.7 and γ̂x ≈ 2.2× 10−3.

Concerning the images themselves, results are shown in

Fig. 2: the estimated image in 2(c) clearly shows a better

resolution than the data in 2(b) and it is visually close to

the original image in 2(a). Nevertheless, it is important to

keep in mind that, w.r.t. other SR methods, the proposed

PO algorithm does not improve image quality itself but the

crucial novelty is to allow for hyperparameter estimation.

In this sense, it is clear that the approach produces correct

hyperparameters i.e. correct balance between data and prior.

Moreover, uncertainties are derived from the samples through

the posterior standard deviation. It is illustrated in Fig. 2(d):

the true image is inside the 99% credibility interval around

the estimate. As a conclusion, the proposed PO algorithm

makes it possible to resort to sampling algorithms in SR

method whereas it was not possible before. It then enables

hyperparameter estimation while other SR methods require

hand-made hyperparameter tuning. In addition, it enables to

compute uncertainties based on posterior standard deviation.

B. Three other examples

The PO algorithm has been used in three other con-

texts: electromagnetic inverse scattering [14], fluorescent

microscopy trough structured illumination [20] and super-

resolution from data provided the Herschel observatory in

astronomy [?].

1The algorithm is implemented within the computing environment Matlab
on a PC with a 3 GHz CPU and 3 GB of RAM.



4

 

 

50

100

150

200

(a) True

 

 

50

100

150

200

(b) Data

 

 

50

100

150

200

(c) Estimate

50 100 150 200 250

50

100

150

200

(d) Uncertainty

Fig. 2. Image reconstruction: true image 2(a), one of the low resolution images 2(b) and the proposed estimate 2(c). The plot 2(d) is a true image slice
inside the 99% credibility interval around the estimate.

The problems are tackled in a Bayesian framework and

implemented by means of stochastic sampling. In these con-

texts, the distribution for the object given the other variables

is Gaussian with large size precision matrix. Its structure

is neither sparse nor circulant making the use of existing

algorithms impossible. This is due to non-linearity and label

variables in [14] and non-invariance of the observation model

in [20, ?]. Nevertheless, the precision matrix is in the form (1),

so, the proposed PO is applicable.

IV. CONCLUSION

The paper presents an algorithm for sampling high-dimen-

sional Gaussian distributions when existing algorithms are

infeasible. It relies on a perturbation-optimization principle:

adequate stochastic perturbation of a criterion and optimization

of the perturbed criterion. It is shown that the criterion

optimizer is a sample of the target distribution. The algorithm

is applicable for a particular decomposition of the precision

matrix that emerges in general linear inverse problems.

There is a wide class of applications, in particular any

processing problem based on a conditional linear forward

model and conditional Gaussian priors for noise and object.

The interest and the feasibility of the proposed algorithm have

been illustrated in [14, 20, ?] and in this paper on a more

academic super-resolution problem allowing automatic tuning

of hyperparameters.

An interesting perspective deals with the case of stopped

optimization procedure. It is a question under consderation

to prove that, embedded in a Gibbs loop, a finite number

(maybe one) of iteration of the optimization step is enough

to guarantee convergence towards the target law.
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