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ABSTRACT

This paper proposes a Bayesian approach for estimation of
instrument parameter in convex image deconvolution. The
parameters of the instrument response (PSF) are jointly esti-
mated with the image leading to a myopic deconvolution ap-
proach. In addition a special convex field allowing efficient
hyperparameter estimation is used. The solution is based on
a global a posteriori law for unknown parameters and object.
The estimate is chosen in the sense of the posterior mean,
numerically calculated by means of a Monte-Carlo Markov
chain algorithm. The computation is efficient with a partial
implementation in Fourier space. Simulation results are pro-
vided to assess the effectiveness of the proposed approach.

Index Terms— Instrument parameter estimation, myopic
deconvolution, semi-blind deconvolution, convex deconvolu-
tion, Monte-Carlo Markov chain.

1. INTRODUCTION

Deconvolution constitutes an active research field as testified
by the recent literature [1, 2]. Examples of application are
medical imaging, astronomy, nondestructive testing and more
generally imagery problems. In these applications, the degra-
dation introduced by the instrument limits the interpretation
of raw data whereas the need in resolution can be important.

Regarding processing methods, deconvolution raises an
ill-posed problem and a solution relies on introduction of in-
formation in addition to the one provided by the data and the
acquisition model. As a consequence, developed methods are
specialized for the class of images in accordance with the in-
troduced information. Form this stand point, this paper is ded-
icated to piecewise regular images with possible edges to be
preserved or enhanced.

Anyway, the resulting estimate depends on variables in
addition to the data. Firstly, the estimate naturally depends
on the instrument response, namely the point spread function
(PSF). The most part of the literature is devoted to the case of
a known PSF, conversely, the present paper as well as more
recent literature, is devoted to the case of poorly known PSF.
In order to solve the problem, additional information must be

introduced and two main configurations exist for the estima-
tion.

The most common configuration operates when the shape
of the PSF is known up to some parameters such width, ori-
entation or position (shift or delay). The PSF equation is
generally provided by the physical operating description. For
example a Gaussian-shaped PSF is often used in optical im-
agery [3]. Parametric shape are also available in other acqui-
sition modality: magnetic resonance force microscopy [4],
spectrometry, optical microscopy [5],. . . The question of the
estimation of this parameters jointly with the image is com-
monly called myopic deconvolution.

From the estimation point of view, the knowledge of the
shape is a crucial information and is critical in order to re-
solve the ambiguity. As a counterpart, the observation model
is generally in a non-linear dependency w.r.t to the instrument
parameters. As a consequence, specific difficulties occur in
the estimation process and one of the contribution of the pro-
posed paper is to overcome these difficulties.

Secondly, the estimate also depends on the parameters of
the probability laws named hyperparameters (mean, variance,
parameters of correlation matrix,. . . ) which tunes, among
other things, the compromise between the information pro-
vided by the a priori and the information provided by the data.
In real experiments, their values are unknown and the inver-
sion problem including their estimation is referred to as un-

supervised. The main difficulty is that the partition function
of non-Gaussian Markov field are usually in unknown rela-
tion with the hyperparameters.The approach developed here
is founded on a special correlated field based on a log-erf con-
vex potential [6] and with an explicit partition function.

For the unsupervised convex blind deconvolution, Molina
[1] tackle the question of the completly blind deconvolution
problem and compute an approximation of the posterior law
with a bayesian variationnal approach. For the myopic or
semi-blind problem, Jalobeanu et al. [3] address the case of a
symmetric Gaussian PSF. The width parameter and the noise
variance are estimated in a preliminary step by Maximum-
Likelihood based on the marginalization of the joint law.
Since the probabilistic model are Gaussian, the integration is



explicit and the maximisation is feasible.
In the present paper we address the convex myopic and

unsupervised deconvolution problem. We propose a new
method that jointly estimates the instrument parameter, the
hyperparameter and the image with an extended a posteriori

law for all unknown variables. The estimate is chosen as the
mean of the posterior law, i.e., the MMSE estimate and it is
computed thanks to Monte-Carlo Markov Chain (MCMC) [7]
stochastic sampling algorithm.

The paper is presented in the following manner. The
two following sections describe our methodology: firstly
the Bayesian probabilistic models are detailed in Sec. 2 and
secondly, the MCMC algorithm used to compute the esti-
mate, is described in Sec. 3. Numerical results are shown in
Sec. 4. Finally, Sec. 5 is devoted to the conclusions and the
perspectives.

2. BAYESIAN PROBABILISTIC MODEL

2.1. Direct model

We consider N pixels real square images represented in lexi-
cographic order by vector x ∈ R

N , with generic elements xn.
The forward model is written y = Hwx + n where y ∈ R

N

is the data, Hw a convolution matrix parametrized by w, x

the image of interest and n the model errors. The parameters,
such as width or orientation, of the parametric model (e.g.,

Gaussian) are collected in vector w ∈ R
P . The matrix Hw

is block-circulant circulant-block (BCCB) for computational
efficiency of the convolution in Fourier space. The diagonal-
ization of Hw is written ΛH = FHwF † where ΛH is a
diagonal matrix, F the unitary Fourier matrix and † the trans-
pose conjugate symbol.

2.2. Image prior law

In a general Gibbs form, the prior model writes

p (x|γ) = Kx(γ)−1 exp [−Φγ (x)]

where Φγ is the energy controlled by a set of parameters
(such as variance, threshold, correlation length. . . ) collected
in a vector γ and Kx(γ) is the partition function. Usual ap-
proaches rely on Markov models: the energy involves local
interactions Φγ (x) =

∑
p ϕγ(xp) where xp is a combina-

tion of pixels in the vicinity of pixel p. The complete design
of the field relies on the structure of x and the structure of ϕ.

As long as the question of parameter estimation is con-
cerned, the key-point is the partition function Kx as a function
of γ, impossible for most models. Nevertheless, in a previous
work [6], we have introduced a new model: it is the unique
non-Gaussian Markov edge preserving field with an explicit
partition function. It involves two variables: a pixel variable
x and an auxiliary (or dual or hidden) variable b that catch

the local spatial structure of x. The joint law for (x, b) writes

p(x, b) = K−1
x,b exp

[
− γx ‖Dx − b‖

2
/2 + γb ‖b‖1 /2

]

where ‖b‖1 is the L1 norm of b, and the partition function

K−1
x,b ∝ (32π)

−N/2
γN/2

x γN
b . (1)

It presents two main advantages: 1) The partition function is
explicit and easy to manipulate: it makes possible the devel-
opment of efficient statistical methods for parameter estima-
tion and 2) The conditional fields p(x|b) and p(b|x) are easy
to simulate: the former is a (correlated) Gaussian component
and the latter is a separable (non-Gaussian) component.

2.3. Noise and data laws

The statistical knowledge about the errors is modeled as white
zero-mean Gaussian with unknown precision parameter γn.
Consequently the parameter likelihood of the parameters at-
tached to the data writes

p(y|x, γn, w) = (2π)−N/2γN/2
n exp

[
−

γn

2
‖y − Hwx‖

2
]
.

It depends, of course, on the image x, on the noise param-
eter γn and instrument parameters w embedded in Hw. It
naturally involves the least square term in spatial and spectral
domain ‖y−Hwx‖2 = ‖

◦

y−ΛH
◦

x‖2. Clearly, the observa-
tion model Hw have generally a non-linear dependency w.r.t
the parameters w that is transmitted to the estimator.

2.4. Hyperparameters law

The parameters [γx, γb, γn] = γ are precisions of exponential
family laws (Gaussian and Laplace laws). A conjugate law for
this parameters is the Gamma law parametrized by two values
(αi, βi) with i = x, b or n

p(γi) =
1

βαi

i Γ(αi)
γαi−1 exp (−γi/βi) . (2)

2.5. Instrument parameters law

Since the likelihood of the instrument parameter is intricate,
no prior law allow easier calculation. Even if the noise law
is Gaussian, the likelihood of the instrument parameter is not
Gaussian at all (expect for linear relation like a gain).

In addition, generally nominal value with uncertainty
comes with a parametrized shape of the observation model.
We consider here that this information can be modelized with
a parameter value in interval [wm wM ]. The "Principle of
Insufficient Reason" leads to a uniform prior on this interval

p(w) = U[wm wM ](w). (3)

However, within the proposed framework, the choice is
not limited and other laws, such as Gaussian, are possible,



without fundamental changes in our methodology. We point
out that whatever the prior law, manipulation and calcula-
tions remains difficult due to the non-linear dependency be-
tween the data and the instrument parameter. Consequently
the choice of the prior law depends mainly on information
modelization principles.

3. POSTERIOR MEAN ESTIMATOR AND LAW

EXPLORATION

This section presents the algorithm to explore the posterior
law and to compute an estimate of the parameters. For this
purpose a Gibbs sampler [7] is used to provide samples.

3.1. Sampling the image

The conditional posterior law of the image (especially given
the auxiliary variables) is Gaussian in Fourier space with in-
verse covariance matrix

Σ
(k+1) = γ(k)

n |Λ
(k)
H |2 + γ(k)

x |ΛD|2 (4)

and mean

µ(k+1) =
(
Σ

(k+1)
)−1 (

γ(k)
n Λ

∗
H

(k) ◦

y + γ(k)
x Λ

∗
D

◦

b
)

. (5)

The vector µ(k+1) is the regularized least square solution at
current iteration (or the Wiener-Hunt solution).

3.2. Sampling auxiliary variables

The sampling of auxiliary variables is delicate but they are
conditionally independent in spatial space. Consequently the
sampling can be done very efficiently in parallel. In addition
this special field allow sampling with the inversion of the cu-
mulative density function (cdf) FB|X [6]. Because of numeri-
cal error, we use instead an efficient independent Metropolis-
Hastings.

3.3. Sampling precision parameters

The conditional posterior laws of the precisions are Gamma
corresponding to their prior law with parameters updated by
the likelihood γ

(k+1)
i ∼ G (γi|αi, βi) . In the case of Jef-

freys’s prior, the parameters are

αn = N/2 and 2β−1
n =

∥∥∥◦

y − Λ
(k)
H

◦

x
(k+1)

∥∥∥
2

,

αb = N and 2β−1
b =

∥∥∥b(k+1)
∥∥∥

1
,

αx = (N − 1)/2 and 2β−1
x =

∥∥∥ΛD
◦

x
(k+1)

∥∥∥
2

.

3.4. Sample instrument parameters

The conditional law for instrument parameters writes

w(k+1) ∝ exp
[
−

γn

2

∥∥◦

y − ΛH,w
◦

x
∥∥2

]
U[wm wM ](w)

where parameters w are embedded in the instrument response
ΛH . This law is intricate and not standard, so no algorithm
exists for direct sampling. Moreover, since this law mainly
depend on ΛH , or the parametric shape defined by the appli-
cation, the choice of the prior law doesn’t influence the com-
plexity.

The Metropolis-Hastings (M.-H.) method is used to by-
pass this difficulty. In M.-H. algorithm, a sample wp is pro-
posed and rejected or accepted with a prescribed probability.
This probability depends on the ratio between the likelihood
of the proposed value wp and the likelihood of the current
value w(k). Consequently the knowledge of the target law is
only needed up to a normalisation constant. In addition it is
only necessary to evaluate it at current state wp or w(k) to use
this algorithm.

3.5. Empirical mean

The sampling of
◦

x, b, γ and w are repeated iteratively un-
til the law has been sufficiently explored. These samples[

◦

x
(k)

, b(k), γ(k), w(k)
]

follow the global a posteriori law. By

the large numbers law, the estimate, defined as the posterior
mean, is approximated with x̂ = F †

E[
◦

x].

4. EXPERIMENTAL RESULTS

This section presents results obtained with the proposed ap-
proach on a realistic case Fig. 1(a).The method is also com-
pared to [1], named BD, whose software is available on-line.

The instrument response ΛH is a discretized normalized
Gaussian PSF written in Fourier space

◦

h(να, νβ) = exp

(
− 2π2

(
ν2

α(wα cos2 ϕ + wβ sin2 ϕ)

+ν2
β(wα sin2 ϕ+wβ cos2 ϕ)+2νανβ sin ϕ cosϕ (wα − wβ)

))

with frequencies (να, νβ) ∈ [−0.5; 0.5]
2. This low-pass filter

is controlled by three parameters:

• two width parameters wα and wβ . Their prior law in-
terval are generally chosen to have an uncertainty of
approximately± 20% and 10% around a nominal value
(see Sec 2.5).

• a rotation parameter ϕ set to π/3 with an a priori law
p(ϕ) = U[π/4 π/2](ϕ). The corresponding uncertainty
is approximately ± 50% around the nominal value.



The images are square with 256×256 pixels. The matrix ΛD

is obtained with the FFT-2D of the Laplacian.
The Fig. 1(c) shows the obtained results with our ap-

proach for this image. Clearly the image is restored with
more spatial details and more high spatial frequency than
data Fig. 1(b). The Fig. 1(d) illustrates the result obtained
with the BD approach, with limitation of 220 iterations. This
image 1(d) suffer from the lack of knowledge of the PSF and
the method tend to estimate a larger PSF up to the limited
support.

(a) True (b) Data

(c) Proposed (d) BD

Fig. 1. Fig. (a) is the true image of the Caterpillar Inc. test
pattern and (b) the data. Fig. (c) is the estimate with the
proposed approach. Fig. (d) correspond to the BD approach
that estimate all the pixel of a non-parametric PSF on a limited
support.

About the instrument parameters the estimated value are
less close to the true value : ŵα = 9.11 for wα = 11 and
ŵβ = 5.9 for wβ = 7. A possible interpretation is : since
there is an anisotropy in the data because of the asymmet-
ric PSF, the approach tends to explain the phenomena with
anisotropy both in the image and the PSF.

True (prior interval) Our approach BD
wα 11 ([8 12]) 9.11 ± 0.0083 -
wβ 7 ([5 8]) 5.9 ± 0.01 -
ϕ 1.047 1.157± 0.001 -

error - 0.01 % 43.27 %

Table 1. Instruments parameters estimation. Estimation of
the parameter is not available in the non-parametric BD ap-
proach. The error is on the energy of the PSF.

About the hyper-parameter estimation since the true val-
ues are not known it is not possible to make a comparison,
expect for the noise value. For this parameter, the estimated
value is very close to the true value with γ̂n = 1.0005 × 106

for γn = 106. The interpretation is that a lot of information
is available in data for the noise since it is in the output of the
system.

5. CONCLUSION

This paper presents a new global and coherent method for un-
supervised myopic robust deconvolution. It is build within a
Bayesian framework and an extended a posteriori law for the
instrument parameters, the image and the hyperparameters.
The estimate, defined as the posterior mean, is computed by
means of an MCMC algorithm. A parametric instrument re-
sponse and an automatic balance between data information
and a priori information are jointly estimated with the im-
age. In addition the results show that the deconvolved image
is closer to the true image than the data and show restored
high-frequencies.
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