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ABSTRACT This model is classical in optical imaging for exemple where

hi . hf ._theAiry disc is approximated by a gaussian [3]. This model is
This paper proposes a Bayesian approach for unsuperviseg, oncoutered in astmospheric turbulence, focus or dsfoc

image deconvolution when the parameter of the gaussian PSfeiing. A difficulty is the non-linearity of the likelihabof
is unknown. The parameters of the regularization paramey, . \idth parameter

ters are also unknown and jointly estimated with the other
parameters. The solution is found by inferring on a gladbal blu
posteriorilaw for unknown object and parameters. The esti-,
mate is chosen in the sense of the posterior mean, numgrical
calculated by means of a Monte-Carlo Markov chain algo-d
rithm. The computation is efficiently done in Fourier space

and th? pra;tlcatl)llltyhof thﬁ. r‘;]lefthod IS ghown on S!mul_ateh ur approach is to estimate the parameter jointly with the im
examples. Results show high-frequencies restorationdn t age and the hyperparameter, not in two step. The paper [2]

estimateq image with correct estimation of the hyperpaFaquse a Gibbs sampler to estimate jointly the image and all the
ters and instrument parameters. pixel of the PSF. This approach estimates the whole PSF but

Index Terms— Image restoration, unsupervised decon-is not adapted to estimate the parameter of a gaussian blur
volution, myopic deconvolution, full-bayesian approach,since they doesn’t take into account the knownledge about
Monte-Carlo Markov chain. the PSF shape. In addition the complexity of this model make
the computational cost very high.

We propose a new method that, contrary to [5] or [6],
jointly estimates the image, the hyperparameters and the

L . i aussian blur parameter in common framwork. The estimate

Deconvolution is an active research field [1,2]. Example

L S . s chosen as the mean of the posterior law and is computed
of application are medical imaging, astronomy, nondestruc

tive testi d v i bl The d using MCMC algorithms, as in [2], to obtain sample of the
Ive testing and more generally Imagery problems. € e['aosteriorilaw despite of its complexity. The model allows the
convolution problem is ill-posed and a well-known solution

. ) ; o S i computation to be done in Fourier space in a very effective
relies on the introduction of prior information in addition

. . manner.
the data. The resulting estimate depends on two sets of vari-

ables in addition to the data. Firstly, the solution depends

on the parameters of the probability laws named hyperparam- 2. FORWARD MODEL

eters (mean, variance, parameters of correlation matrix,.

Secondly, the estimate naturally depends on the instruraent We considetV pixels real square images represented in lex-
sponse model. These problems are called myopic or blind ari§ographic order by vectae € R™, with generic elements
a book has been recently published on this subject [1]. Man§i»- The forward model is writtery = Hyx + n where
application have knownledge about the shape of the PSF up€ R” are the dataf., a convolution matrix parametrized
to some unknown parameters. An exemple where the instrdy parameters collected # andn the model errors. In these
ment is known up to some shape parameters is microscofaPer we deal with a gaussian blur written in Fourier space
imaging [4]. This paper deal with the case where the PSF is .

known to be gaussian but the width parameter is unknwon. h(ve,vp) = exp ( —2rw(v2 + 1/5)) (1)

A recent paper [5] address the estimation of the gaussian
r with an empirical method. Several value are used to es-
imate the image with a Wiener filter with fixed hyperparam-
ter. The best parameter is chosen to minimize the second
erivativesL; norm of the estimate. Another work [6] pro-
ose a maximum likelihood to estimate the blur parameter.

1. INTRODUCTION



with frequencies(v,,v3) € [—0.5; 0.5]>. The non-linear 3.4. Gaussian blur parameter law
dependency of the valuk with w will be the main diffi-
culty. The matrixH,, is considered block-circulant circulant-
block (BCCB) for computational efficiency of the convolu-
tion in Fourier space. The diagonalization Hf,, is written
A = FH, F' whereA g is a diagonal matrixF' the uni-
tary Fourier matrix and the transpose conjugate symbol. The
convolution, in Fourier space, is writtégn= A i +n where

For the blur parametew, we consider that a physical study
provides a nominal value with uncertainty in a given inter-
val [m M]. These is the case for example in optics where
FHWM of the Airy disc is the wavelength over the lens di-
ameter)\/D [3]. Since no more information is available, we
consider a uniform prior on the interval

z = Fx,y = Fy andn = Fn are the 2D discrete Fourier 1
transform OFT-2D) of image, data and noise, respectively. p(w) = U ay(w) = mﬂ[m My (w) )
The description is equivalent and everything will be done in
Fourier space. with 1, a(w) = 1, if w € [m M], O elsewhere. Other
choice are possible but do allow easier computation because
3. BAYESIAN ERAMEWORK of the non-linear dependency in the likelihood.

This section presents the prior law for each set of parameterg 5 pgsterior law

In order to account for smoothness, the image law introduces

penalization of high-frequency through a difference ofmra At this point the law of the image, the hyperparameters, the

on the pixel. Conjugate law for the hyperparameters and uninstrument parameters and the data are available. Thus, the

form law for the instrument parameters are considered. a posteriorilaw for all the parameters is built by multiplying
the likelihood (3) and tha priori laws (2), (4) and (5)

3.1. Image prior law

° o N/2-1_(N-1)/2-1q
The probability law for the image is a toroidal Gaussian field P(&; Yy Yz, w|y);x T e y fm 011 ()
p(x|v.) ~ N(0, (v, D' D)~') parametrized by the, preci- exp [—Tnlli’/ — Azl - 73”||AD:°4@||2 . (6)
sion. In the Fourier space, the probability law is also Geumss
and writes Finally, inference is done on this law (6). An estimate arel th
(&) ,Y;Nfl)/Q exp |:_’Y_2I||AD.%||2:| ' ) algorithm is described in the next section.

The circulant difference operatdp, and its diagonalization
Ap = FDF?, is build with a high-pass filter, the Laplacian
for example.

4. POSTERIOR MEAN AND LAW EXPLORATION

To compute the posterior mean of the parameters, Monte
) Carlo Markov chain is used to provides samples of (6). The
3.2. Noise and data laws samples are obtained by a Gibbs sampling algorithm. It con-

The noise is modeled as white zero-mean Gaussian with uSiSts in sampling, iteratively, a conditional posterioxlaf a
known precision parameter,. Consequently the likelihood set of parameters given all the others parameters obtained a

of the parameters given the data writes previous iteration.
o0 Y o o
Pl 1, w) o exp | =1y — AHwIIZ’} (3 4.1. sampling the image

It depends, of course, on the imageon the noise parameter The conditional posterior law of the image is a Gaussian law.

¥» and instrument parametexsembedded il g Its covariance matrix is diagonal and writes
3.3. Hyperparameters law SEED =y AB 2 4 B A2 (7)

A classical choice for hyperparameter prior law is conjegat
law with computational efficiency justification [2]. A conrju

and the mean

gate law for Gaussian precisions parameters is the Gamma pEHD — 4 () (E(kﬂ))ﬂ A (k){l)/. ®)
law parametrized by two valués;, 5;), with i = x orn, " H

p(v) = %7%—1 exp (—7i/Bi) - (4)  wherex is the conjugate symbol. The vectpf*+! is the

B T (ai) regularized least square solution at current iterationtljer

In addition we also want to use non-informatigepriori ~ Wiener-Hunt solution). Finally, since the matrix are diagh
law. With specific parameter values, one obtains the nonthe sampling of the image is very effective: all the operatio
informative Jeffreys’s prior law(~y) = 1/4 with (0, +00). are term-wise addition and multiplication.



4.2. Sampling precision parameters

The conditional posterior laws of the precisions are Gamma.
For~, and~, the parameters law are

250,

] o (k?+1)
ol = N2 Y =l - AR

ot = (N —1)/2, U =2/|Apa" Y12

3

4.3. Sample instrument parameters

0 50 100 150 200 250

The conditional law for instrument parameters writes (@) Daa

(k+1) T
n o o (k+1
W oc exp [ =L |1y — A ' Nﬂ. ©) |

2

This law is not standard and intricate, and no algorithmtexis
for direct sampling. In addition the dependency\y ., with

w is non-linear. The proposed solution relies on the power-
ful Metropolis-Hastings method. In the independent foren th
algorithm is:

1. Sample a propositiom, ~ p(w) = Uy, a(w).

(b) Estimate

2. Calculate the criterion
Fig. 1. Result for Lena. Fig. 1(a) is the data. Fig. 1(b) is

T B A A o (k1) 19 the estimate. Profiles correspond to the 68-th line. Satiel i
(w 7wp) =5 <||y — A k) T |I°= profile is the true.

o o (k"’_l)
1= A, 312).

5.1. Estimation results
3. Samplet ~ U 1 and takesv v+ = w, if logt <

. The result for the image is illustrated Fig. 1(b). The imagje i
min{J, 0}, w*+1 = w*) otherwise. g 9. 1(b) 9

restored, more details are visible and the profiles are ctose

Since everything is in Fourier space, andis a scalar, the the true image than data. High-frequencies are more visible

a|gorithm is very effective. As a counter part, more Samp|eand oscillation that were not visible in the data are present
are needed because of rejection. in the estimate particularly around pixels 200 in the profile

Fig. 1(b). The estimated circular mean of the power spectral
density of the objects are illustrated Fig. 2. The spectrdim o

the true image is retrieve up to the frequerfcy 0.15 limits

The sampling oft, v andw are repeated iteratively until the where the noise start to be dominant. After this frequency,
law has been sufficiently explored. The estimate is approxithe power spectral density of the data mainly comes from the
mated with# = FTE[z] where all the iteration can be done noise. Since the method estimate the parametemnd-,,

4.4. Empirical mean

in Fourier space with an uniquerT at the end. this frequency limit is automatically estimated.
Concerning the hyperparameters, since we must know the
5. DECONVOLUTION RESULTS true value of all the parameter, the study is done on a sample

of the prior law. Their estimates are reported in Tab. 1. For
This section is devoted to numerical experiments. It iseach resultthe ISNR define #88log,(||z —y||?/||x — Z||?)
based on two images : (1) the usual Lena case and a (R)crease. The estimated ¢f, is each time close to the true
the case of a sample of the prior law (so that true values ofalues and seems to be a little under estimated. yT.hesti-
the hyperparemeterg, and~, are known). The noise is mation is very close with,, = 0.49 instead of 0.5 or 1.98 for
a white gaussian and several valuesypfare tested. The 2. The value ofy, is underestimated with approximately 1.9
matrix Ap is obtained with therFT-2D of the Laplacian and 1.3 instead of 2.
[010;1—41;010]/8. The width parametew is set to 4 For the gaussian blur the result is compared to the method
or 6. It's a priori laws isp(w) = Us 7. This corresponds DL, described in [5] that also estimate the gaussian blur pa-
to uncertainty of approximately 40% around the nominal rameter. Our result is each time closer to the true valueef th
value. paramater specially when the noise increases. The inagetit



Fig. 2. Circular mean of the power spectral density (PSD)
of the image, the output model imad€x, the data (filtered
image corrupted by noise) and the estimate that is closesto th

—lena
- estimated
-data

convolued

0 0.05 0.1

0.15

true until noise dominate in data.

0.2 0.25

v (SNR) Ve w ISNR
True 0.5(27) 2 6
meant-o 0.49 +0.01 2.06£0.14 | 6.03+0.3 | 3.85
DL, - - 9.23
True 0.01(10) 2 6
meanto | 0.009 +0.002 | 2.05+0.2 | 5.354+0.8 | 9.09
DL, - - 6.5
True 0.5(32) 2 4
meanto 0.49 + 0.01 1.34+0.09 | 444+0.29 | 2.86
DL, - - 2.05

Table 1. Paramters results. SNR and ISNR are in dB.

is quite small. Even with the prior incertitude the posterio
law is concentrate around the true value.

5.2. A posteriori law characteristics

The histograms of,, and~,,, Fig. 3(a) and 3(b) respectively,
are concentrated around their mean. The variance,of
lower than they, one. Effectively there is a degradation, by
the convolution, of the information abott presentin the im-

600

500

400

300

200

100

(c) w

Fig. 3. Histograms fory,, and~,. andw.

and the blur parameter. The estimate, defined as the poste-
rior mean, is computed by means of an MCMC algorithm
in less than 5 minutes on a standard computer. The results
show that the deconvolved image is closer to the true image
than the data and show restored high-frequencies. In addi-
tion the gaussian blur parameter and the hyperparameters ar
estimated and close to the true value.
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