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ABSTRACT

Super-resolution methods aimed to restore the spectrum of

an original image above the half sampling frequency. The

restoration problem is generally viewed as an inverse prob-

lem and a lot of research focus on the inversion approach. In

this paper the question of super-resolution is addressed with

only the forward model point of view. With the addition of the

time dimension in an specific case of continuous shift scan-

ning we obtain explicit expression for the forward model and

the data spectrum. We show with a new, simple and rigor-

ous formalism that super-resolution can be done because the

whole set of data is less aliased than a single image of the

scene. Moreover, limits, conditions and performance ques-

tions are also addressed as well as perspectives on sampling

conditions.

Index Terms— Image restoration, image sampling,

super-resolution.

1. INTRODUCTION

Super-resolution image restoration methods intend to restore

frequency of an image above the half sampling frequency

1/2L of a sensor [1] with L as pixel size. To achieve this,
the methods usually consider a collection of noisy blurred and

under-sampled images of the same scene. The small shift in-

ferior to a pixel size [2] between the images allow to restore

higher frequencies.

The problem to restore a unique single image from this

data set is generally viewed as an inversion problem with a

forward model that take into account the motion and other

sensor effects. A lot of research is done to produce new

restoration algorithms that combine better motion estima-

tion [3], new image prior field or better forward model [4]

(such as transformations other than translations) for example.

In this paper the de-aliasing is only addressed from the

forward point of view rather than the inversion point of view.

The shift is considered to be continuous in one direction, en-

countered in spatial imaging, satellite imaging or robotics.

In this shift case and with the addition of the time dimen-

sion in the formalism, we obtain an explicit expression of the

data spectrum. We show easily with this new formalism that,

while the image spectrum is aliased, the introduction of mo-

tion in time produce data that are less aliased: anymethod that

properly take into account this information naturally achieve

super-resolution.

2. FORWARDMODEL

This section describes the forward model. A signal φ(x) ∈

L2 : R → R is firstly shifted and secondly integrated and

sampled by a sensor. Spectrum of the data is derived.

2.1. The shift

The continuously shifted signal φs is written as a function of

time

φs(x, t) = φ
(

x − p(t)
)

(1)

where p(t) corresponds to the protocol describing the evo-
lution of the translation. The case of the continuous spatial

translation with constant rate is p(t) = vt + x0 where (v, x0)
are the scan speed and the origin point at the beginning of the

acquisition. The Fourier transform of the shifted signal in the

spatial dimension is

◦

φs(fx, t) =
◦

φ(fx)e−2jπfxp(t). (2)

It is the spectrum of the original signal with a phase that de-

pends on the shift protocol. It is interesting to note that it

is only the additional phase term that depends on time. The

importance of this point will appears later.

2.2. Spatial and temporal sampling

The shifted signal is spatially and temporally integrated by

the sensor. Each sensor element l, centered in coordinate xl,

has a size L. The optical convolution and sensor response
can be sum up by h(x). In addition the signal is temporally
sampled in time with a period T . When the sensors are regu-
larly spaced in space and time, it is generally more convenient

to described this acquisition with the convolution of the sig-

nal by h(x) followed by a multiplication with a Dirac comb.
Then the sensor acquisition is written

y(x, t) = ∆L(t)∆T (t)

∫

R

φs(x
′, t)h(x′ − x) dx′ (3)



where ∆L(x) =
∑

l δ(x − lL) and ∆T (t) =
∑

n δ(t − nT )
and δ the Dirac distribution. However this model potentially
supposes that an infinite number of samples are available.

Then the field of view of the sensor L as well as the total time

of observation T are introduced with a rectangular function 1

y(x, t) = 1L(x)1T (t)∆L(x)∆T (t)
∫

R

φs(x
′, t)h(x′ − x) dx′ (4)

where 1L(x) = 1 if −L/2 ≤ x ≤ L/2, 0 elsewhere. It is
important to notice that the data are described in continuous

formulation even with the sampling step.

2.3. The data spectrum

Super-resolution method aimed to restore the frequencies

above the sampling frequency 1/2L and reduce aliasing. To
understand how the introduction of several spatial acquisition

with smalls shift between them allow to restore this frequen-

cies, the data Fourier transform
◦

y in spatial fx and time f
frequency will be helpful

◦

y(fx, f) =

∫∫

R2

y(x, t)e−2jπ(fxx+ft) dxdt. (5)

Since data is the result of convolution and multiplication,

the spectrum in spatial frequencies can be rewrites as a con-

volution of
◦

φs

◦

h with
◦

1L

◦

∆1/L in the fx axis

◦

y(fx, f) =

∫

R

[

∫

R

◦

φs(f
′

x, t)
◦

h(f ′

x)
◦

1L(f ′

x − fx)

∆1/L(f ′

x − fx) df ′

x

]

1T (t)∆T (t)e−2jπft dt. (6)

With the expression (2), the data spectrum
◦

y(fx, f) become

∫

R

◦

ys(f
′

x)

∫

R

1T (t)∆T (t)e−2jπf ′

xp(t)e−2jπft dt df ′

x (7)

where

◦

ys(f
′

x) =
◦

φ(f ′

x)
◦

h(f ′

x)
◦

1L(f ′

x − fx)∆1/L(f ′

x − fx) (8)

is the spectrum in spatial frequencies and doesn’t depends on

time. Moreover, the integration on time in (7) doesn’t depends

on the signal.

Now we can use the expression of the particular shift pro-

tocol p(t) = vt + c. Starting from (7) the integral on time is
a Fourier transform and is explicit

∫

R

1T (t)∆T (t)e−2jπ
(

f ′

xv+f
)

t dt =

∑

n

T sinc
[

T

(

f ′

xv + f +
n

T

)]

(9)

where sinc (x) = sin(πx)/πx. It is the 1/T periodic spec-
trum of a squared window with dual variable f ′

xv + f .
Finally the data spectrum can be derived

◦

y(fx, f) =
∑

l,n

∫

R

◦

φ(f ′

x)
◦

h(f ′

x)e−2jπf ′

xx0

T sinc
[

T

(

f ′

xv + f +
n

T

)]

◦

1L

(

f ′

x − fx +
l

L

)

df ′

x.

In order to have a simpler expression, easier to analyse, the

spatial field of view is considered infinite. It’s Fourier trans-

form is a Dirac
◦

1L(fx) = δ(fx) and the simplified spectrum
writes

◦

y(fx, f) =
∑

l,n

◦

φ
(

f l
x

) ◦

h
(

f l
x

)

e−2jπf l
xx0

T sinc
[

T

(

f l
xv + f +

n

T

)]

(10)

with f l
x = fx−l/L. It is a periodic spectrum in both axis with

the spectrum of the original signal
◦

φ, the transfer function
◦

h
and the transform due to time.

3. DATA SPECTRUM DISCUSSIONS

In this section we discuss (10) that is the spectrum of data

obtained with a continuous shift of the signal in one direction:

• First, their is a sum over the index l and n. This index
represent respectively the spatial and temporal replica-

tion because of sampling.

• Second, the signal spectrum
◦

φ and the transfer function
◦

h depend only on the spatial frequency fx, not on f .

• Then, a sinc function has replaced the phase of the shift.

This sinc function depends on the two frequencies fx

and f .

3.1. Analyze

3.1.1. Introduction of the time

In comparison to a sampled filtered signal spectrum, the main

difference point in the shifted signal spectrum is the sinc func-

tion. Firstly, this is the only part that depend on f . The origi-
nal signal spectrum and the transfer function does not depend

on f . Secondly, it depends on the shift protocol parameters
(T , v).
In other word, the shift of the signal during the time has

introduced a second dimension f in the data spectrum. The
original signal spectrum does not depends on it but a supple-

mentary sinc term, that depends on the shift parameter has

been added and apply a transformation on the signal spec-

trum.



3.1.2. Influence of the time

For more clarity of the description, the problem is reduced to

one period n = 0 in f axis. Then

◦

y(fx, f) =
∑

l

◦

φf

(

f l
x

)

T sinc
[

T
(

f l
xv + f

)]

(11)

with the filtered signal
◦

φf (fx) =
◦

φ(f l
x)

◦

h(f l
x)e−2jπf l

xx0 . If

the sinc function where not present we retrieve the periodic

spectrum
∑

l

◦

φf

(

f l
x

)

with aliased frequency if L is not suffi-
ciently small.

To illustrate the influence of the time, the Fig. 1 shows the

data spectrum. The Fig. 1(a) is the periodic signal spectrum
∑

l

◦

φf

(

f l
x

)

expressed in fx and f . The Fig. 1(b) is the peri-

odic sinc part
∑

l T sinc
[

T
(

f l
xv + f

)]

. On Fig. 1(c), each

period of index l of the signal spectrum has been multiplied
with a sinc function that depends also on l like

sinc

[

T

(

(

fx −
l

L

)

v + f

)]

. (12)

The maximum of each sinc function is determined by the line

(fx − l/L)v + f = 0 or f = −fxv + lv/L. (13)

As illustrated on Fig. 1(b), the origin of those lines (or the sinc

functions) on axis f depends on the index l but also on v and
L. The inclination of the line (or the sinc function) depends
only on v.

3.2. Super-resolution

Since each period l of the signal spectrum Fig. 1(a) is mul-
tiplied with the corresponding sinc function l Fig. 1(b), each
period is present on different place in the Fourier plane as

illustrated by Fig. 1(c). The support of the sinc function is in-

finite but it’s energy can be neglected after some level. There-

for each period can be considered separated: there is no more

aliasing or aliasing is greatly reduced.

This simple equation (10), illustrated on Fig. 1, explains

why, when there is a continues shift in one direction, the

restoration by super-resolution method is possible. Effec-

tively, in the data spectrum there is less aliasing. Then, if the

method uses properly this data to restore the original signal, it

is possible to restore frequency above the sampling frequency.

3.3. Limits and conditions

This specific case allows to obtain a well and precise descrip-

tion with explicit equation (10). Then it is possible to obtain

conditions or criteria based on the parameters of the shift pro-

tocol that assure that there is no aliasing in data. In addition

some limits behaviour and conditions can be derived that de-

pend also on the shift parameters.

f

fx

l = −1 l = 0 l = 1

aliasing

(a)

f

fx

l = 0

l = 1

l = −1

(b)

f

fx

l = 0

l = 1

l = −1

(c)

Fig. 1. The support of the spectrum. The Fig. (a) is the

sampled filtered signal spectrum support. This spectrum is

defined only on fx and is extended along the f axis. The
Fig. (b) is the support of the central lobe of the sinc functions.

The data spectrum is illustrated on Fig. (c). It is the sum of

the product of each l-replication of the signal with the corre-
sponding l-replication of the sinc function described by (11).

3.3.1. Example of condition

The support of the sinc functions are infinite. As a conse-

quence the separation is not perfect and there is always alias-

ing. However, as a criterion the support of the first N zero of
each sinc function is used as a limit beyond which there is no

superposition. In these case the influence support of each sinc

is between the two lines

f = fxv +
lv

L
±

Nπ

T
(14)

Then two periods with index l and l + 1 are separated if

fxv +
lv

L
+

Nπ

T
< fxv +

(l + 1)v

T
−

Nπ

T
. (15)

if and only if

vT > 2πNL. (16)

Even if 1/L is smaller than the Nyquist frequency, if the two
parameters v and T are set to assure this inequality, the data
has not aliased with respect to this condition.

3.3.2. Limits of the scan speed v

If the scan speed v = 0, all the maxima are on the line f = 0
as described by (13). The sensor doesn’t move and no more



super-resolution is possible. The obtained data spectrum is

◦

y(fx, f) = T
∑

l

◦

φf

(

f l
x

)

, (17)

the image spectrum amplified by T : the observation in time

improve the SNR of data. If the scan speed is v = +∞, the

maximum of each sync is on the line fx = −l/T and

lim
v→+∞

sinc
[

T
(

f l
xv + f

)]

= 0. (18)

All the energy is lost, the sensor doesn’t have the time to in-

tegrate the signal.

If vT = qL with q ∈ N (the distance in one period of

time is a multiple of the pixel size), with the periodization in

f axis, the maximum lines are

f = −fxv + (ql − n)/T. (19)

No super-resolution is possible because there at least two lines

(l, n) and (l′, n′) that are identical: the period are, again, su-
perimposed.

3.3.3. Limits of the temporal sampling period T

If the sampling period is T = 0 there is a perfect sampling
(the continuous signal is acquired). All the maximum line,

except for l = 0, go to infinite. The period are perfectly sepa-
rated and super-resolution restoration are potentially perfect.

If the sampling period T = +∞, all the maximum lines

are f = fxv for all l. All the sinc function are overcome.
No more super-resolution is possible since, at most, only one

temporal sample as been acquired.

3.3.4. Limits of the total observation time T

If the total observation time T = 0 there is no observation
at all and the data spectrum is null as described by (10). If

T = +∞ the integral over t in (9) writes
∫

R

∆T (t)e−2jπ
(

f ′

xv+f
)

t dt =
∑

n

δ
(

f ′

xv + f +
n

T

)

. (20)

All the sinc function become Dirac distributions and the pe-

riod are perfectly separated.

4. EXTENSION TO IMAGE

The extension to image is straightforward and is based on the

addition of a second dimension. The expression of the data

spectrum is more complex but the structure still the same

◦

y(fα, fβ , f) =
∑

l,m,n

◦

φ
(

f l
α, fm

β

) ◦

h
(

f l
α, fm

β

)

e−2jπf l
αcα

e−2jπfm
β cβT sinc

[

T

(

f l
αvα + fm

β vβ + f +
n

T

)]

. (21)

In this case, the previous condition (16) is written: two peri-

ods with index (l, m) and (l′, m′), respectively, are not aliased
if

(

(l − l′) vα + (m − m′) vβ

)

T < 2πNL. (22)

5. CONCLUSIONS

This paper describe and explain, with a description in Fourier

space of the forward model, how super-resolution is possible.

The computation of the data spectrum is done in a special

case of a continuous shift in one direction during the whole

observation. Thanks to the addition of the time dimension in

the formalism, we show that restoration of image frequencies

above the spatial sampling frequency is possible because the

data are less aliased. Since this property is about data, it is

available to any processing method that take into account the

time. The formalism allow also to address some questions

about the limits and performances of super-resolution. Fu-

ture work can focus on the consequence of the finite field of

view in the limits and conditions, finer analyse of the f axis
periodization, and more general motion protocol.
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