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Abstract—In this paper we propose an approach of image
restoration from multispectral data provided by an imaging
system. We specifically address two topics: (i) Development of
a multi-wavelength direct model for non-stationary instrument
response that includes a spatial convolution and a spectral
integration, (ii) Implementation of multispectral image
restoration using a regularized least-square, based on a
quadratic criterion and minimized by a gradient algorithm.
We test our approach on simulated data of the Mid-InfraRed
Instrument IMager (MIRIM) of the James Webb Space
Telescope (JWST). Our method shows a clear increase of spatial
resolution compare to conventional methods.

Index Terms—Direct Model, Multispectral Imaging, Inverse
Problems, Image Restoration

I. INTRODUCTION

Multispectral imaging instrument are used in many fields,
e.g. remote sensing [?], medicine [?], astrophysics [?]. Imag-
ing system on board space telescopes are specific subject
of this work, especially the Mid-InfraRed Instrument IMager
(MIRIM) [?] on board the James Webb Space Telescope
(JWST)1 which is the next space telescope of NASA, ESA and
the Canadian Space Agency (CSA) to be launched at the end of
2018. Such a system is mainly composed of an optical system
(or optic) that gathers source’s light (or object) from space
and provides it to the imaging instrument, which contains a
spectral filter (or photometric band) to select the wavelength
band of interest and an infrared detector that integrates and
discretizes the light, providing a 2D discrete image data.

Due to its passage through the optics, photon flux of the
object of interest is diffracted on the focal plane of the
telescope. The result is a spatial 2D-convolution of the object
with the optic response known as Point Spread Function
(PSF) [?]. On the other hand, the PSF vary accordingly to
the wavelength, blurring the object of interest and limiting
its spatial resolution. The second problem occurs during the
integration of the object by the detector, where the continuous
2D+λ object is integrated spectrally over the filter bandpass,
the 2D discrete image data has thus no spectral dimension.

Conventional approaches consider measured PSFs [?], [?]
but only PSFs at specific wavelengths are measured. Other

1https://jwst.nasa.gov/

approaches assume a broadband PSF, by averaging available
monochromatic PSFs, weighted by the filter+detector spectral
response and the object spectrum to observe [?]. Broadband
PSF smooths the structure of the PSF and makes it dependent
on the object spectrum to observe, especially for filters with
wide bands. In addition, a monochromatic object spectrum is
assumed for unknown sources, which results in a stationary
PSF and leads to inaccurate optics response and direct model.
Spatially-variant PSF has also been studied in [?] which
approximates the spatial-variant PSF using PSF-interpolation.
The same idea was used in [?] to approximate the spectral-
variant PSF. More recently, [?] reviews and provides models
of spatial-variant PSF. Other works treated deconvolution
problem with unknown parameter of the PSF or unknown PSF,
known as myope or blind deconvolution [?]. In the other hand,
the spectral integration is mostly approached by a spectral
convolution, such as in [?] where the 3D-PSF is separated
into spectral and spatial-invariant PSF, and [?] by using PSF-
interpolation so that the direct model is a 2D+λ convolution. In
this paper we deal with the continuous spectral integration by
taking into account informations from available multispectral
data of multi-filter, and preserve the spectral non-stationarity
of PSF using PSF simulator. This work aims to restore a
discrete version of the original spatio-spectral object from
available multispectral discrete data. Our main contribution is
the development of an instrument model and a direct model for
an imaging system with a non-stationary instrument response.

The paper is organized as follows. In Sec. ??, we develop
the instrument model. Then we present the direct model
along with the restoration in Sec. ??. Experimental results on
simulated data with an application to the instrument MIRIM
are presented and discussed in Sec. ??. Finally, we conclude
our work and provide perspectives in Sec. ??.

II. INSTRUMENT MODEL

In this section we develop the instrument model for the
imager. The block diagram of the instrument is represented in
Fig. ??, and is composed of an optic response, spectral filtering
and detector integration. The object of interest at the entrance
of the acquisition system is a 3D object, φ pα, β, λq : R3 Ñ R,
having two spatial dimensions pα, βq P R2 (angles in radian)
and one spectral dimension λ P R` (in microns). During the



observation process with the filter f (f P r1, nf s where nf
stands for total number of filters), the object is modified by
the instrument components, providing 2D-discrete data ypfq.

Optic
hpα, β, λq

Filter
τf pλq

Detector
ηpλq, bint

ypfqφpα, β, λq φopt φfilt

Fig. 1. Block diagram of the instrument model of the imager.

A. Instrument Response
1) Optic: The effect of the optic is carried out by the

pα, βq-convolution of the input object φpα, β, λq with the
spectral-variant PSF hpα, β, λq as follows

φopt pα, β, λq “ φ pα, β, λq ˚
pα,βq

h pα, β, λq (1)

“

ĳ

R2

φ
`

α1, β1, λ
˘

h
`

α´ α1, β ´ β1, λ
˘

dα1dβ1,

where ˚
pα,βq

stands for 2D spatial convolution.

Fig. ?? illustrates the non-stationarity of the PSF. We display
two simulated PSFs of the instrument JWST/MIRIM at dif-
ferent wavelengths from the mid-infrared range, λ1 “ 7.7µm
and λ2 “ 25.25µm, PSFλ2 is clearly larger than PSFλ1 .

Fig. 2. Monochromatic PSFs simulated at λ1 “ 7.7µm and λ2 “

25.25µm, using the simulation tool WebbPSF [?] for the instrument MIRIM
on board the JWST.

2) Filter: The object passes through the filter f in order
to select the wavelength range of interest. This operation is
performed through the filter response τf pλq as follows

φ
pfq
filt pα, β, λq “ τf pλqφopt pα, β, λq . (2)

3) Detector: The detector integrates the filtered object and
performs sampling. We model its response in two steps :
‚ The spectral integration is weighted by the spectral re-

sponse of the detector (or quantum efficiency) ηpλq,

ypfqpα, βq “

ż

R`
ηpλqφ

pfq
filtpα, β, λqdλ. (3)

‚ We introduce a basis function bint to perform spatial
sampling within spatial integration, e.g. indicator function
of a sensitive area of the pixel Ωpix. The discrete data of
the filter f and pixel pi, jq is

y
pfq
i,j “

ĳ

Ωpix

ypfqpα, βqbint pα´ αi,j , β ´ βi,jq dαdβ.

(4)

with αi,j and βi,j the angular directions of the pixel
position pi, jq defined on the detector grid. We denote
N the total number of pixels.

B. Complete Formulation

The complete formulation of the instrument model is ob-
tained by substituting Eqs.(??)-(??) and (??) in Eq.(??). This
yields

y
pfq
i,j “

ż

R`
ηpλqτf pλq

´

ĳ

Ωpix

φ pα, β, λq ˚
pα,βq

h pα, β, λq

bint pα´ αi,j , β ´ βi,jq dαdβ
¯

dλ. (5)

This model links the continuous 3D object φpα, β, λq at the
entrance of the imaging system to the 2D discrete data ypfq

through the instrument response, which includes spectral win-
dowing and five integrations, two for spatial 2D-convolution,
two for spatial integration and one for spectral integration.
The developed instrument model takes into account the non-
stationarity of the instrument response through the spectral-
variant PSF. Moreover, the above model does not include non-
ideal characteristics of the detector [?]. All these effects are
assumed to be corrected through the pipeline stages of the
data reduction plan [?]. In this paper, we consider the same
sampling grid of the object as for the data, and that all pixels
are regularly disposed on the detector grid, having the same
area Ωpix.

In order to simplify the instrument model, we consider
a constant object over pixel area. Thus, we define bint as
a rectangular function over the pixel area. The impact of
this approximation is slightly important for detectors with
good resolution, such as MIRIM detector [?]. Thus, Eq.(??)
becomes

y
pfq
i,j “ Ωpix

ż

R`
ηpλqτf pλq

φ pαi,j , βi,j , λq ˚
pαi,j ,βi,jq

h pαi,j , βi,j , λq dλ (6)

where ˚
pαi,j ,βi,jq

stands for discrete 2D-convolution.

III. DIRECT MODEL AND INVERSE PROBLEM

In this section we first model the object spectrum, then
we develop the direct model, thereafter we tackle the inverse
problem of the object.

A. Continuous Object Spectrum

In this paper we model the spectrum object with a con-
tinuous piecewise linear function, as shown in Fig.(??). This
choice allows us to obtain a simple model that preserves
the spectral distribution of the object with less complexity,
whereas conventional approaches do not. They generally con-
sider a model with broadband PSF, defined as a spectral
integration of monochromatic PSF weighted by the filter +
detector + object spectrum window [?]. Hence, one can only



attempt to restore a spatial distribution with such a model [?].
The object is modeled as follows

φ pαi,j , βi,j , λq “
nb
ÿ

b“1

´

xpbq pαi,j , βi,jq g
pbq
` pλq`

xpb´1q pαi,j , βi,jq g
pbq
´ pλq

¯

1rλpb´1q,λpbqspλq,

(7)

where b P r1, ..., nbs is the index of the bandwidth, 1pλq the
indicator function, which is equal to 1 for λ P

“

λpb´1q, λpbq
‰

and 0 otherwise. The discrete parameters x
pb´1q
i,j and x

pbq
i,j

are intensities of the object at λpb´1q and λpbq, respectively.
g
pbq
´ pλq “

1
2 ´

λ´λpbqc

λpbq´λpb´1q and g
pbq
` pλq “

1
2 `

λ´λpbqc

λpbq´λpb´1q

express the linear slope of the object spectrum.
Thanks to the parameterization in Eq. (??), the object

spectrum is continuous in λ and the positivity constraint is
naturally fulfilled.

xp2q

xp0q

xp1q
xpnb´1q

λp0q

xpnbq

λp2qλp1q λλpnb´1q λpnbq

...

...
λ
p1q
c λ

p2q
c λ

pnbq
c

φpαi,j , βi,j , λq

...
b “ 1 b “ 2 b “ nb

Fig. 3. Representation of a piecewise linear spectrum, for a single position
over a wavelength range of rλp0q, λpnbqs. (in dots) Filters transmission to
illustrate the multi-filter analysis.

B. Direct model

The discrete data ypfq contains information about the object
of interest within the filter bandpass. In fact, we use a multi-
filter analysis to develop a direct model that accounts for
informations of the whole wavelength range of the instrument.
By substituting Eq.(??) in Eq.(??) and rearranging similar
terms, only wavelength-dependent terms are left in the spectral
integration without the object parameter x. This yields

y
pfq
i,j “

nb
ÿ

b“0

h
pf,bq
int pαi,j , βi,jq ˚

pαi,j ,βi,jq
xpbqpαi,j , βi,jq (8)

where hpf,bqint is a 2D integrated PSF

h
pf,bq
int pαi,j , βi,jq “ Ωpix

ż

R`
ηpλqτf pλq

”

g
pb`1q
´ pλq ` g

pbq
` pλq

ı

hpαi,j , βi,j , λqdλ,

(9)

with the boundary conditions gpnb`1q
´ pλq “ g

p0q
` pλq “ 0.

Eq. (??) can be formulated in a vector form as follows

ypfq “
nb
ÿ

b“0

H int
pf,bqxpbq ` εpfq, (10)

where Hpf,bq
int P RNˆN is a convolution matrix. xpbq P RN

and ypfq P RN are vector representations of ypfq and xpbq.
εpfq P RN corresponds to readout noise and modeling error.

The linear direct model in Eq. (??) is a sum of pnb ` 1q
spatial convolutions, between the 2D object parameters xpbq

and 2D system response Hpf,bq
int . Moreover, the observation

ypfq contains information about the unknown object over
the whole spectral range, weighted by the spectral windows
ηpλqτf pλq. By combining all available multispectral data in
one vector y, Eq. (??) becomes

y “Hx` ε, (11)

whereH “

!

H
pf,bq
int

)

f“1:nf

b“0:nb

is a block matrix containing nfˆ

pnb` 1q convolution matrices corresponding to the integrated
PSFs hpf,bqint . We denote by x “

“

xp0q . . .xpnbq
‰t

the vector of
pnb ` 1q unknowns object parameters, y “

“

yp1q . . .ypnf q
‰t

vector of all available data, and ε “
“

εp1q . . . εpnf q
‰t

vector of
additive noise associated to data.

C. Restoration

Restoration of x relies on regularized least-square approach
in inverse problems [?], where the solution is obtained by
minimizing a criterion J as follows

x̂ “ argmin
x

J pxq . (12)

The criterion of least-square (called data fidelity) is
}y ´Hx}

2
2. It enforces agreement of the solution x̂ with the

data y. Least-square problem is ill-posed because of the ill-
conditioning of H . In fact, regularized least-square estimator
aims of correcting this ill-posedness by adding a regularization
term }Cx}22 to the criterion, withC a well-conditioned matrix.
We are particularly interested in a quadratic-regularization (l2-
norm) in order to obtain a differentiable criterion. This allow
us to implement a fast calculation of the solution. Therefore,
the regularized least-square criterion is

J pxq “ }y ´Hx}22 ` }Cx}
2
2 , (13)

the matrix C “ diag
!

?
µ0Dα,β , . . . ,

?
µnb
Dα,β

)

, where
Dα,β is a 2D spatial constraint operator, e.g. discrete
Laplacian operator in case of a spatially smooth object.
Moreover, regularization parameters µ0, . . . , µnb

are set to
compromise between the two terms of the criterion, data
fidelity and regularization.

As J is a quadratic form, solution of the problem x̂ is
explicit and obtained by canceling the gradient of the criterion
defined in Eq.(??) :

x̂ “ pHtH `CtC
looooooomooooooon

Q

q´1Hty (14)

where Q is a Hessian matrix of size pnb` 1qN ˆ pnb` 1qN .



We first attempt to compute the solution by inverting Q
using diagonalization of circular matrices in Fourier space,
therefore, computing Q´1 means inverting N square matrices
of size pnb ` 1q ˆ pnb ` 1q. This calculation turns out
heavy for nb ą 4. We propose instead to compute the
solution without inverting Q, i.e. by solving a linear system
pHtH ` CtCqx̂ “ Hty through an iterative scheme, e.g.
using numerical optimization algorithm such as the conjugated
gradient (CG) algorithm [?]. Moreover, we consider circular
convolution and compute the solution in Fourier space for
efficient computation.

IV. SIMULATION RESULTS

A. Application to JWST/MIRIM
We apply the proposed approach to the instrument MIRIM

on board the space telescope JWST. The optical system of the
telescope is mainly composed of a 6.5-meters primary mirror,
made up of 18-hexagonal segmented mirror. The imaging
instrument MIRIM has nine photometric bands that cover
the mid-infrared range of 5 to 28µm. Their transmission
profiles are given in [?]. The object of interest is guided
through mirrors to the MIRIM detector [?], where it will be
integrated and sampled. MIRIM detector has a pixel scale of
0.11 arcsec/pixel (Ωpix “ 0.112 arcsecond2) and its spectral
window ηpλqτf pλq is known as Photon Conversion Efficiency
(PCE) [?], see Fig. ??. Moreover, non-stationary PSF is a set
of monochromatic PSFs simulated on a discrete wavelength
grid that covers the whole spectral range of the instrument,
simulated with WebbPSF [?] the official PSF simulator of
mission JWST.

B. Setup
In order to validate the proposed approach, all tests were

done on simulated data, where we simulated the original object
as a cube of size 64ˆ64ˆ9 pN “ 64, nb “ 8q with a Gaussian
spatial distribution (σ “ 3) and a linear spectrum over the
instrument spectral range. We implemented the direct model in
Eq.(??) by computing the nine integrated PSFs and performing
convolutions with original object parameters. As a result,
nine multispectral data are simulated corresponding to nine
MIRIM photometric bands. Signal-to-noise ratio (SNR) [?] is
used to evaluate the level of the white Gaussian zero-mean
noise added to the data. We implement the conjugate gradient
algorithm to restore the object parameter x̂ and compare it to
the conventional approach given in Sec. ??, referenced as as
"standard". Object restoration in case of the standard approach
consists of deconvolution of nine data by considering com-
puted broadband PSFs. We use the unsupervised deconvolution
method of [?], with a quadratic-regularization and same prior.
We obtain deconvolved observations as well as estimation
of regularization parameters, these latter are used for both
approaches, proposed and standard ones. Finally, the restored
object of interest φ̂ is deducted from the restored object
parameter x̂ using Eq.(??). Restoration quality is measured
with a relative error

›

›

›
φoriginal ´ φ̂

›

›

›

2
{
›

›φoriginal

›

›

2
between the

original object of interest φoriginal and the restored object φ̂.

C. Discussion

Fig. ?? illustrates restoration results in a spectral dimension,
where we display the spectrum of the central pixel of the
original object, proposed and standard restorations. All data
are corrupted by an additive zero-mean Gaussian noise of 30
dB. We observe that the restored spectrum using the proposed
approach fits very well the original spectrum along the whole
wavelength range. However, the standard approach fails to
do so, because of the inaccuracy of the instrument response
considered in the standard approach. In addition, Fig. ?? shows
observed data using filter f “ 8 (named F2100W), the original
object at λ “ 18.7µm and the spatial restoration with both
approaches. The restoration result using our approach shows
a good restoration of the dynamic and the spatial details, the
blur caused by the PSF is also removed, with an error of 6.27%
compared to 21.29% obtained with the standard approach.
Moreover, we notice that the wider the filter band, the better
the results of our approach compared to the conventional
approach, which is the case for the instrument MIRIM.

V. CONCLUSION

In this paper we present the problem of image restoration
from multispectral data acquired by an imager, where we
restored a spatio-spectral object. An instrument model with
a complex non-stationary response is detailed, including a
spatial convolution with a spectral-variant PSF and a spectral
integration. Then, we developed a multi-wavelength direct
model, which is the sum of spatial 2D-convolution of the
object parameter with an integrated PSF. The idea relies
on using a multi-filter processing and an approximation
of a continuous piecewise linear spectrum. Multispectral
restoration is implemented using regularized least-square
based on quadratic criterion. Preliminary restoration results
are provided on simulated data, where we obtained a clear
improvement of restoration quality compared to classical
approach.

Several aspects are to improve in our approach, such as the
estimation of the pnb`1q regularization parameters. As future
work, generalization of the direct model by introducing a set
of basis functions of the object discretization, and increasing
the spectral sampling of the sought object by adding spectral
prior of the object. Finally, validation of direct model and
restoration of real astrophysical object.
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